首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage.  相似文献   

2.
Pulmonary hypertension (PH) is prevalent in patients with obstructive sleep apnea (OSA) syndrome, and coexistence of PH and OSA indicates a worse prognosis and higher mortality. Chronic intermittent hypoxia (CIH) is the key pathogenesis of OSA. Also, microRNA-223 (miR-223) plays a role in the regulation of CIH-induced PH process. However, the detailed mechanism of CIH inducing PH is still unclear. This study aimed to investigate the pathological process of CIH associated PH and explore the potential therapeutic methods. In this study, adult Sprague–Dawley rats were exposed to CIH or normoxic (N) conditions with 2-methoxyestradiol (2-Me) or vehicle treatment for 6 weeks. The results showed that 2-Me treatment reduced the progression of pulmonary angiogenesis in CIH rats, and alleviated proliferation, cellular migration, and reactive oxygen species formation was induced by CIH in pulmonary artery smooth muscle cells (PASMCs). CIH decreased the expression of miR-223, whereas 2-Me reversed the downregulation of miR-223 both in vivo and in vitro. Furthermore, the antiangiogenic effect of 2-Me observed in PASMCs was abrogated by miR-223 inhibitor, while enhanced by miR-223 mimic. These findings suggested that miR-223 played an important role in the process of CIH inducing PH, and 2-Me might reverse CIH-induced PH via upregulating miR-223.  相似文献   

3.
研究发现,异氟醚吸入麻醉可明显减轻由缺血-再灌注引起的肺动脉高压(PAH),提示其对肺循环功能有一定保护效应。肺动脉平滑肌细胞(PASMC)是肺动脉血管重塑和PAH发生的主要参与者,其结构改变和功能异常均可显著影响肺动脉高压病情进展。本研究探讨异氟醚对缺氧诱导的PASMC焦亡的影响及其调控机制,旨在为肺动脉高压治疗提供潜在分子靶点。PASMC于37℃、5%CO2、3%O2条件下静置培养24 h建立缺氧模型。RT-PCR和Western印迹等结果显示,缺氧致使PASMC内紅系衍生的核转录因子2(Nrf2)核转位减少,血红素加氧酶-1(HO-1)表达水平下调,而焦亡相关蛋白质,包括NOD样受体蛋白3(NLRP3)、胱天蛋白酶1(caspase-1)、凋亡相关斑点样蛋白(ASC)及消皮素D(GSDMD)等表达上调,活性氧(ROS)生成、胱天蛋白酶1活性和乳酸脱氢酶(LDH)释放水平升高,Hoechst/PI染色显示,焦亡孔洞增加。ELISA结果表明,IL-1β、IL-6、IL-18和TNF-α分泌增加(P<0.05)。异氟醚处理可显著激活Nr...  相似文献   

4.
Oxidative stress has been postulated to be involved in aging and age-related degenerative diseases. Cell death as a result of oxidative stress plays an important role in the age related diseases. Using human diploid fibroblasts (HDF) as model to study the mechanism of cell death induced by oxidative stress, a condition was standardized to induce apoptosis in the early passage sub-confluent HDFs by a brief exposure of cells to 250 M hydrogen peroxide. It was observed that p38 MAP kinase (MAPK) was activated soon after the treatment followed by over-expression of Bax protein in cells undergoing apoptosis. An interesting finding of the present study is that the confluent, quiescent HDFs were resistant to cell death under identical condition of oxidative stress. The contact-inhibited quiescent HDFs exhibited increased glutathione level following H2O2-treatment, did not activate p38 MAP kinase, or over-express Bax, and were resistant to cell death. These findings indicated that there was a correlation between the cell cycle and sensitivity to oxidative stress. This is the first report to our knowledge that describes a relationship between the quiescence state and anti-oxidative defense. Furthermore, our results also suggest that the p38MAPK activation-Bax expression pathway might be involved in apoptosis induced by oxidative stress.  相似文献   

5.
Impaired autophagy and oxidative stress are implicated in the development of many diseases. This study aimed to investigate the involvement of autophagy represented by autophagy-related gene 7 (Atg7) and oxidative stress represented by superoxide dismutase 2 (SOD2) gene expression and enzyme activity in the pathogenesis of osteoporosis. Atg7 and SOD2 gene relative expression were evaluated by SYBR green quantitative real-time-polymerase chain reaction in the osteoporotic group (n = 26) versus the osteoporosis free group (n = 14). SOD2 enzyme activity was evaluated by colorimetric method in both study groups. Both Atg7 and SOD2 relative expression showed highly significant decrease (P < 0.01) between both groups. However, SOD2 enzyme activity showed no significant difference between the two groups. There was a significant direct correlation between Atg7 and SOD2 gene expression in both study groups. Atg7 relative expression showed significant ( P < 0.01) direct correlation with vitamin D serum levels and body mass index in osteoporotic group. In conclusion, both genes are involved in the pathogenesis of osteoporosis and this could be amenable to future therapeutic intervention.  相似文献   

6.
The aim of this study was to explore the dose- and time-dependent effects of hydrophilic peroxyl radical initiator 2,2'azobis(2amidinopropane)dihydrochloride (AAPH) on apoptosis, and on expression of Bcl-2 in L1210 leukaemic cells. We observed a progressive increase of intracellular concentration of oxygen free radicals (OFR), manifested by the rise of 6-carboxy-2', 7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) oxidation, during 24 h of cells exposure to AAPH. Oxidative stress was associated with peroxidation of cellular lipids, which was demonstrated by the measurement of thiobarbituric acid-reactive substances and conjugated dienes. Analysis of cell viability by the use of trypan blue exclusion method revealed that AAPH reduced the ability of L1210 cells to multiply or survive. AAPH increased the number of leukaemic cells with typical features of apoptosis like condensation of chromatin, pyknosis and fragmentation of nucleus, followed by secondary necrosis. A characteristic internucleosomal DNA cleavage, visualized as a DNA ‘ladder’ consisting of fragments that are multiples of 180-200 bp was also observed. The intensity of apoptosis was dependent on AAPH concentration, time of cell exposure and the availability of growth factors and nutrients in extracellular environment (FCS concentration). The novel observation is the increase of Bcl-2 level in L1210 leukaemic cells surviving an oxidative stress. The level of Bcl-2 protein significantly rose with increasing AAPH concentration, and time of cell exposure to this oxidant. This phenomenon could be the result of: (1) negative selection of cells with the lowest expression of bcl-2, being more susceptible to oxidative stress and (2) increased synthesis and/or decreased degradation of Bcl-2 protein as an adaptation to continuous OFR loading. In contrast to growth-promoting medium (10% FCS/RPMI), the maintenance medium (2% FCS/RPMI) did not cover cell requirements for progressive Bcl-2 increase at the highest AAPH concentration (2 mM) applied in this study. Several observations indicate that the increased Bcl-2 level in surviving L1210 leukaemic cells exposed to oxidative stress is a symptom of their natural defence against cellular lipids peroxidation and apoptosis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Cancer cells are characterized by elevated levels of reactive oxygen species, which are produced mainly by the mitochondria. The dismutase SOD2 localizes in the matrix and is a major antioxidant. The activity of SOD2 is regulated by the deacetylase SIRT3. Recent studies indicated that SIRT3 is decreased in 87% of breast cancers, implying that the activity of SOD2 is compromised. The resulting elevation in reactive oxygen species was shown to be essential for the metabolic reprograming toward glycolysis. Here, we show that SOD2 itself is down-regulated in breast cancer cell lines. Further, activation of oncogenes, such as Ras, promotes the rapid down-regulation of SOD2. Because in the absence of SOD2, superoxide levels are elevated in the matrix, we reasoned that mechanisms must exist to retain low levels of superoxide in other cellular compartments especially in the intermembrane space of the mitochondrial to avoid irreversible damage. The dismutase SOD1 also acts as an antioxidant, but it localizes to the cytoplasm and the intermembrane space of the mitochondria. We report here that loss of SOD2 correlates with the overexpression of SOD1. Further, we show that mitochondrial SOD1 is the main dismutase activity in breast cancer cells but not in non-transformed cells. In addition, we show that the SOD1 inhibitor LCS-1 leads to a drastic fragmentation and swelling of the matrix, suggesting that in the absence of SOD2, SOD1 is required to maintain the integrity of the organelle. We propose that by analogy to the cadherin switch during epithelial-mesenchymal transition, cancer cells also undergo a SOD switch during transformation.  相似文献   

8.
Among various types of neurons affected in Parkinson’s disease, dopamine (DA) neurons of the substantia nigra undergo the most pronounced degeneration. Products of DA oxidation and consequent cellular damage have been hypothesized to contribute to neuronal death. To examine whether elevated intracellular DA will selectively predispose the dopaminergic subpopulation of nigral neurons to damage by an oxidative insult, we first cultured rat primary mesencephalic cells in the presence of rotenone to elevate reactive oxygen species. Although MAP2+ neurons were more sensitive to rotenone-induced toxicity than type 1 astrocytes, rotenone affected equally both DA (TH+) neurons and MAP2+ neurons. In contrast, when intracellular DA concentration was elevated, DA neurons became selectively sensitized to rotenone. Raising intracellular DA levels in primary DA neurons resulted in dopaminergic neuron death in the presence of subtoxic concentrations of rotenone. Furthermore, mitochondrial superoxide dismutase mimetic, manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, blocked activation of caspase-3, and consequent cell death. Our results demonstrate that an inhibitor of mitochondrial complex I and increased cytosolic DA may cooperatively lead to conditions of elevated oxidative stress and thereby promote selective demise of dopaminergic neurons.  相似文献   

9.
生殖健康是人口与健康领域的重要议题。作为全球最常见的呼吸道疾病哮喘会影响男性生殖功能,但相关机制鲜有报道。本文研究了黄酮类化合物黄芩苷(baicalin, BA)对哮喘小鼠睾丸损伤的干预作用及相关机制。选择雄性BALB/c小鼠随机分为对照组(CK组)、卵清蛋白(ovalbumin, OVA)致敏的哮喘组(OVA组)和黄芩苷干预哮喘组(OVA+BA组)。结果发现,3组小鼠体重无明显差异。OVA组小鼠睾丸系数和精子数量显著降低(P<0.05),精子畸形率显著增加(P<0.05);黄芩苷干预组小鼠睾丸系数显著增加(P<0.05),精子畸形率显著降低(P<0.05)。HE染色观察到OVA组小鼠睾丸组织生精小管结构损伤,精子发生异常,生精细胞减少,Johnson得分显著降低;BA干预组生精小管直径及生精上皮细胞高度显著增加,生精小管基膜结构较完整,Johnson得分显著提高(P<0.05);试剂盒法检测氧化还原指标发现,OVA组睾丸组织过氧化氢(H2O2)和丙二醛(MDA)含量显著增加(P<0.05),总超氧化物歧化...  相似文献   

10.
目的:探索帕金森病(Parkinson's disease,PD)患者血清中氧化应激标志物变化情况。方法:募集2014年4月至2015年4月来我院就诊的PD患者62例,正常对照人群59例,采集两组人群的基本临床信息,测定两组血浆中活性氧和丙二醛含量,超氧化物歧化酶、谷胱甘肽过氧化物酶及过氧化氢酶的活性,同时测定血清清除羟自由基的能力,比较两组之间的差异。结果:与正常对照组比较,PD患者血清中活性氧和丙二醛含量,超氧化物歧化酶、谷胱甘肽过氧化物酶及过氧化氢酶的活性,及血清清除羟自由基的能力无明显差异(P0.05)。而Hoehn/Yahr分级≥4 PD患者与正常对照组血清氧化应激标志物比较发现,Hoehn/Yahr分级≥4 PD患者血清丙二醛含量显著高于对照组(P=0.018),其他指标两组之间无显著变化(P0.05)。结论:PD患者血清中氧化应激水平与正常对照组比较无显著差异,运动功能障碍严重的PD患者血清脂质过氧化产物水平高于正常对照组。该研究为PD与氧化应激相关性的研究提供了一定的参考。  相似文献   

11.
P16降低二倍体成纤维细胞的凋亡敏感性   总被引:2,自引:0,他引:2  
脂质体介导法分别介导正、反义p16逆转录病毒表达载体转染人胚肺二倍体成纤维细胞 ,经鉴定后 ,分别用Hoechst33342 PI双染、TUNEL、DNAladder分析检测各转染细胞对H2 O2 的敏感性 .结果显示 ,反义p16重组体转染细胞较易凋亡 ,而正义p16重组体转染细胞不易凋亡 .Western印迹检测显示 ,正义p16重组体转染细胞中P2 1表达增强 ,caspase 3的表达减弱 .H2 O2 作用后 ,正义p16重组体转染细胞Bcl 2蛋白水平显著高于反义p16重组体转染细胞 .  相似文献   

12.
p53凋亡刺激蛋白2(apoptosis stimulating protein 2 of p53, ASPP2)能特异性地与p53蛋白结合并增强其促凋亡功能,进而发挥抗肿瘤作用.最近文献提示,自噬对肿瘤发生、发展及肿瘤细胞对抗肿瘤药物的反应都具有重要作用.在本研究中,甲基磺酸(MMS)处理HepG2细胞24 h后,用calcein AM/PI和M30染色检测细胞凋亡,可引起早期(M30免疫组化阳性)和晚期细胞凋亡(PI染色阳性). 给HepG2细胞转染GFP-LC3质粒后,发现MMS处理24 h可引起自噬的发生. ASPP2腺病毒(rAd-ASPP2)感染HepG2细胞引起ASPP2过表达后,再用MMS处理24 h,能引起更明显的早期、晚期细胞凋亡和自噬. 荧光定量PCR检测发现,rAd-ASPP2诱导了更高的BCL-2相关X蛋白基因(BAX)和p53蛋白的目的基因p53诱导的自噬调节蛋白(p53-induced modulator of autophagy,DRAM)的表达. 但仅用rAd-ASPP2处理HepG2细胞不能引起自噬和凋亡.利用2条DRAM特异性的siRNA下调DRAM的表达,发现rAd-ASPP2引起的自噬被完全抑制, 早期和晚期凋亡均部分被抑制,同时BAX 的mRNA水平也明显下降. 以上结果说明,ASPP2可通过上调BAX和DRAM基因的转录而促进MMS引起的HepG2细胞凋亡; 另外,DRAM介导的自噬是ASPP2促进MMS引起的肿瘤细胞凋亡的机制之一. 该研究可为肝癌的基因治疗提供新的思路.  相似文献   

13.
Engraft cells are often exposed to oxidative stress and inflammation; therefore, any factor that can provide the stem cells resistance to these stresses may yield better efficacy in stem cell therapy. Studies indicate that histone deacetylase (HDACs) inhibitors alleviate damage induced by oxidative stress. In this study, we investigated whether regulation of reactive oxygen species (ROS) occurs through the HDAC inhibitor trichostatin A (TSA) in human bone marrow‐mesenchymal stem cells (hBM‐MSCs). Intracellular ROS levels increased following exposure to hydrogen peroxide (H2O2), and were suppressed by TSA treatment. Levels of the antioxidant enzyme superoxide dismutase 2 (SOD2) increased following treatment with 200 nM TSA and to a lesser level at 1–5 μM TSA. Cell protective effects against oxidative stress were significantly increased in TSA‐MSCs after treatment with low doses of TSA (50–500 nM) and decreased with high doses of TSA (5–10 μM). Consistent results were obtained with immunoblot analysis for caspase3. Investigation of Forkhead box O1 (FOXO1), superoxide dismutase 2 (SOD2), and p53 levels to determine intracellular signaling by TSA in oxidative stress‐induced MSCs demonstrated that expression of phosphorylated‐FOXO1 and phosphorylated‐SOD2 decreased in H2O2‐treated MSCs while levels of p53 increased. These effects were reversed by the treatment of 200 nM TSA. These results suggest that the main function of ROS modulation by TSA is activated through SOD2 and FOXO1. Thus, optimal treatment with TSA may protect hBM‐MSCs against oxidative stress. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Platinum-based drugs have been widely used in cancer treatment. However, their severe side effects have limited their use. So, researchers have been striving to find compounds with fewer side effects and greater efficacy, to overcome these drawbacks. Here, the cytotoxicity of platinum(II) complexes containing 2-(diphenylphosphino)pyridine ligands have been studied on human lung (A549), ovarian (SKOV3), breast (MCF-7) cancer, and normal breast (MCF-10A) cell lines. The most potent compound exhibits a marked cell growth-inhibitory effect against ovarian and lung cancer cells with IC50 values of 9.41 and 5.58 μM, respectively, which were significantly better than that observed for cisplatin (19.02, and 8.64 μM). Additionally, all complexes achieved significantly lower cytotoxicity towards MCF-10A. To investigate the interaction of complexes with DNA, an electrophoresis mobility shift assay was conducted, which indicated that complexes bind to DNA and affect its electrophoretic mobility. An analysis of apoptosis in A549 cells supported the conclusion that they inhibits cell proliferation via induction of apoptosis in a concentration-dependent manner. Molecular docking was also used to investigate the interactions of compounds with different DNA structures. These compounds have the ability to be a suitable pharmaceutical compound with further investigations in the field of cancer research.  相似文献   

15.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

16.
Microglia are activated quickly in response to external pathogens or cell debris and clear these substances via the inflammatory response. However, excessive activation of microglia can be harmful to host cells due to the increased production of reactive oxygen species and proinflammatory cytokines. Superoxide dismutase 2 (SOD2) is reportedly induced under various inflammatory conditions in the central nervous system. We herein demonstrated that activated microglia strongly express SOD2 and examined the role of SOD2, focusing on regulation of the microglial activity and the susceptibility of microglia to oxidative stress. When rat primary microglia were treated with LPS, poly(I:C), peptidoglycan, or CpG oligodeoxynucleotide, respectively, the mRNA and protein levels of SOD2 largely increased. However, an increased expression of SOD2 was not detected in the primary neurons or astrocytes, indicating that SOD2 is specifically induced in microglia under inflammatory conditions. The activated microglia showed high tolerance to oxidative stress, whereas SOD2 knockdown conferred vulnerability to oxidative stress. Interestingly, the production of proinflammatory cytokines was increased in the activated microglia treated with SOD2 siRNA compared with that observed in the control siRNA-treated cells. Pretreatment with NADPH oxidase inhibitors, diphenylene iodonium and apocynin, decreased in not only reactive oxygen species generation but also the proinflammatory cytokine expression. Notably, SOD2 knockdown largely potentiated the nuclear factor κB activity in the activated microglia. Taken together, increased SOD2 conferred tolerance to oxidative stress in the microglia and decreased proinflammatory cytokine production by attenuating the nuclear factor κB activity. Therefore, SOD2 might regulate neuroinflammation by controlling the microglial activities.  相似文献   

17.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

18.
The aim of the study was to analyse the effect of Val 16Ala polymorphism in SOD2 gene on oxidative stress parameters and lipid profile of the blood during a three-month wrestling training. The study included 53 Polish young wrestlers. Blood samples were collected at the beginning of the programme and following three months of the training. The list of analysed parameters included erythrocyte and serum activities of superoxide dismutase (SOD), whole blood glutathione peroxidase (GPx) activity, total glutathione (tGSH) level, concentration of lipid hydroperoxides (LHs), total antioxidant capacity (TAC) and creatine kinase (CK) activity in the serum, as well as lipid profile parameters: triglycerides (TG), total cholesterol (TC), high-density (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Three-month training resulted in a decrease in CK activity, an increase in serum SOD activity, as well as in unfavourable changes in serum lipid profile: an increase in TC, LDL-C, and TG, and a decrease in HDL-C. Aside from CK activity, all these changes seemed to be associated with presence of Val allele. Prior to the training programme, subjects with Ala/Ala genotype presented with lower levels of LHs, lower whole blood GPx activity, and lower serum concentrations of TC than the individuals with Ala/Val genotype. Both prior to and after three-month training, higher levels of tGSH were observed in Val/Val genotype as compared to Ala/Val genotype carriers. Moreover, multiple regression analysis demonstrated that SOD2 genotype was a significant predictor of pre-training whole blood GPx activity and erythrocyte SOD activity (Val/Val?>?Ala/Val?>?Ala/Ala). Altogether, these findings suggest that Val 16Ala polymorphism in SOD2 gene contributes to individual variability in oxidative stress status and lipid profile of the blood in young wrestlers, and may modulate biochemical response to training.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号