共查询到20条相似文献,搜索用时 15 毫秒
1.
Taesup Cho Jae K. Ryu Changiz Taghibiglou Yuan Ge Allen W. Chan Lidong Liu Jie Lu James G. McLarnon Yu Tian Wang 《PloS one》2013,8(10)
Neural stem cell (NSC) replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP), one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs) and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR) via systemic application of the receptor antagonist, 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP). Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF) and its consequent activation of tropomysosin receptor kinase B (TrkB) receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases. 相似文献
2.
3.
The present study was to investigate the influence of tenuigenin, an active ingredient of Polygala tenuifolia Willd, on the
proliferation and differentiation of hippocampal neural stem cells in vitro. Tenuigenin was added to a neurosphere culture
and neurosphere growth was measured using MTT assay. The influence of tenuigenin on the proliferation of neural progenitors
was examined by Clone forming assay and BrdU detection. In addition, the differentiation of neural stem cells was compared
using immunocytochemistry for β III-tubulin and GFAP. The results showed that addition of tenuigenin to the neural stem cell
medium increased the number of newly formed neurospheres. More neurons were also obtained when tenuigenin was added in the
differentiation medium. These findings suggest that tenuigenin is involved in regulating the proliferation and differentiation
of hippocampal neural stem cells. This result may be one of the underlying reasons for tenuigenin’s nootropic and anti-aging
effects. 相似文献
4.
Kazuhiko Fujimura Tetsuhiro Niidome Yoriko Shinozuka Yasuhiko Izumi Takeshi Kihara Hachiro Sugimoto Akinori Akaike Toshiaki Kume 《PloS one》2015,10(2)
Neural stem/progenitor cells (NSPCs) proliferate and differentiate depending on their intrinsic properties and local environment. During the development of the mammalian nervous system, NSPCs generate neurons and glia sequentially. However, little is known about the mechanism that determines the timing of switch from neurogenesis to gliogenesis. In this study, we established a culture system in which the neurogenic potential of NSPCs is decreased in a time-dependent manner, so that short-term-cultured NSPCs differentiate into more neurons compared with long-term-cultured NSPCs. We found that short-term-cultured NSPCs express high levels of integrin-associated protein form 2 (IAP2; so-called CD47) mRNA using differential display analysis. Moreover, IAP2 overexpression in NSPCs induced neuronal differentiation of NSPCs. These findings reveal a novel mechanism by which IAP2 induces neuronal differentiation of NSPCs. 相似文献
5.
Nazia Chaudhuri Hannah Jary Simon Lea Naimat Khan Katie C. Piddock David H. Dockrell Ken Donaldson Rodger Duffin Dave Singh Lisa C. Parker Ian Sabroe 《PloS one》2012,7(12)
Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease. 相似文献
6.
目的:探讨体外培养脐带血单个核细胞定向诱导分化为不同阶段红系祖细胞的动力学变化情况。方法:用0.5%甲基纤维素沉降脐带血红细胞及人淋巴细胞分离液密度梯度离心法得到单个核细胞,在含EPO、SCF、IGF-1等细胞因子的无血清培养体系中诱导其定向分化为红系祖细胞,观察细胞增殖、存活率、细胞集落形成情况,并检测不同阶段细胞红系特异性表面标志CD71和CD235a的表达。结果:随着培养时间的延长,细胞数逐渐增多,14 d细胞可扩增140倍左右,收集诱导后的细胞进行瑞氏吉姆萨染色,可见大量红系祖细胞,诱导后的细胞集落形成能力强,形成的克隆大部分为红系集落。诱导过程中,14 d前CD71、CD235a的表达逐渐增高。按细胞表面标志表达的不同可将诱导的细胞分为4群,分别对应红系祖细胞的不同阶段;随着诱导天数的增加,各时间点细胞对应的早期红系祖细胞群(P2、P3)比例逐渐下降,中晚期红系祖细胞群(P4、P5)的比例逐渐上升。结论:无血清培养基添加细胞因子组合的红系诱导培养体系可较好地诱导扩增红系祖细胞,流式分选可获得相对均一而处于不同分化阶段的红系祖细胞群体。获得了红系祖细胞体外分化的动力学数据,为今后进一步优化红系诱导分化体系获得均一的红系祖细胞奠定了基础,并对未来利用干细胞制备均一的红系祖细胞应用于临床治疗有一定的指导作用。 相似文献
7.
Ricardo Castilho Garcez Bianca Luise Teixeira Suelen dos Santos Schmitt Márcio Alvarez-Silva Andréa Gonçalves Trentin 《Cellular and molecular neurobiology》2009,29(8):1087-1091
Proliferation of neural crest (NC) stem cells and their subsequent differentiation into different neural cell types are key early events in the development of the peripheral nervous system. Soluble growth factors present at the sites where NC cells migrate are critical to the development of NC derivatives in each part of the body. In the present study, we further investigate the effect of microenvironmental factors on quail trunk NC development. We show for the first time that EGF induces differentiation of NC to the neuronal and melanocytic phenotypes, while fibroblast growth factor 2 (FGF2) promotes NC differentiation to Schwann cells. In the presence of both EGF and FGF2, the neuronal differentiation predominates. Our results suggest that FGF2 stimulates gliogenesis, while EGF promotes melanogenesis and neurogenesis. The combination of both growth factors stimulates neurogenesis. These findings suggest that these two growth factors may play an important role in the fate decision of NC progenitors and in the development of the peripheral nervous system. 相似文献
8.
Abstract: Bradykinin- and substance P (SP)-stimulated second messenger studies in isolated subsets of neuroglia showed bradykinin-stimulated synthesis of phospho- inositides (PI) in type-1 astrocytes and oligodendrocytes. SP-stimulated PI accumulation was restricted to oligoden- drocyte/type-2 astrocyte progenitor cells and type-2 astrocytes. These data were confirmed by analysis of calcium transients in single cells. In a regional study, SP-stimulated PI accumulation in primary astrocyte cultures was restricted to white matter. We conclude that regional heterogeneity in the expression of peptide receptors in cultures of primary astrocytes arises from a restricted distribution on subsets of macroglia. SP receptors restricted on cells of the oligodendrocyte/type-2 astrocyte type-2 lineage in vitro, coupled with in vivo observations by others, suggests that SP receptor expression is conserved on subsets of macroglia in vitro and possibly reactive astrocytes in vivo. 相似文献
9.
Yuping Luo Ge Shan Weixiang Guo Richard D. Smrt Eric B. Johnson Xuekun Li Rebecca L. Pfeiffer Keith E. Szulwach Ranhui Duan Basam Z. Barkho Wendi Li Changmei Liu Peng Jin Xinyu Zhao 《PLoS genetics》2010,6(4)
Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA–binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3β. Dysregulation of GSK3β led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis. 相似文献
10.
Branislava Janic Austin M. Guo A. S. M. Iskander Nadimpalli Ravi S. Varma Alfonso G. Scicli Ali S. Arbab 《PloS one》2010,5(2)
Background
Stem cells/progenitors are central to the development of cell therapy approaches for vascular ischemic diseases. The crucial step in rescuing tissues from ischemia is improvement of vascularization that can be achieved by promoting neovascularization. Endothelial progenitor cells (EPCs) are the best candidates for developing such an approach due to their ability to self-renew, circulate and differentiate into mature endothelial cells (ECs). Studies showed that intravenously administered progenitors isolated from bone marrow, peripheral or cord blood home to ischemic sites. However, the successful clinical application of such transplantation therapy is limited by low quantities of EPCs that can be generated from patients. Hence, the ability to amplify the numbers of autologous EPCs by long term in vitro expansion while preserving their angiogenic potential is critically important for developing EPC based therapies. Therefore, the objective of this study was to evaluate the capacity of cord blood (CB)-derived AC133+ cells to differentiate, in vitro, towards functional, mature endothelial cells (ECs) after long term in vitro expansion.Methodology
We systematically characterized the properties of CB AC133+ cells over the 30 days of in vitro expansion. During 30 days of culturing, CB AC133+ cells exhibited significant growth potential that was manifested as 148-fold increase in cell numbers. Flow cytometry and immunocytochemistry demonstrated that CB AC133+ cells'' expression of endothelial progenitor markers was not affected by long term in vitro culturing. After culturing under EC differentiation conditions, cells exhibited high expression of mature ECs markers, such as CD31, VEGFR-2 and von Willebrand factor, as well as the morphological changes indicative of differentiation towards mature ECs. In addition, throughout the 30 day culture cells preserved their functional capacity that was demonstrated by high uptake of DiI fluorescently conjugated-acetylated-low density lipoprotein (DiI-Ac-LDL), in vitro and in vivo migration towards chemotactic stimuli and in vitro tube formation.Conclusions
These studies demonstrate that primary CB AC133+ culture contained mainly EPCs and that long term in vitro conditions facilitated the maintenance of these cells in the state of commitment towards endothelial lineage. 相似文献11.
Insulin like growth factor-1 (IGF-1) plays an important role in the proliferation and differentiation of neural progenitor
cells. The effects of IGF-1 can be regulated by insulin like growth factor binding protein-3 (IGFBP-3) which can either inhibit
or stimulate the proliferation of cells depending on the expression of proteases that can release IGF-1 from IGF1-IGFBP3 complex.
Although IGF-1 is essential for the development of brain, both IGFBP-3 and IGF-1 are elevated in the brains of children younger
than 6 months of age. Likewise, IGFBP-3 is also upregulated following cerebral ischemia and hypoxia. However, the role of
IGFBP-3 in neurogenesis is not clear. Using an in vitro culture system of rat neural progenitor cells, we demonstrate that
IGFBP-3 specifically regulates the IGF-1 mediated neural progenitor cell proliferation via down regulation of phopho-Akt,
and cyclin D1. In addition, IGFBP-3 also decreased the content of nestin in the neural progenitor cells indicating its potential
role in neurogenesis. 相似文献
12.
Fan Wang Lei He Wei-Qi Dai Ya-Ping Xu Dong Wu Chun-Lei Lin Shu-Mei Wu Ping Cheng Yan Zhang Miao Shen Chen-Feng Wang Jie Lu Ying-Qun Zhou Xuan-Fu Xu Ling Xu Chuan-Yong Guo 《PloS one》2012,7(12)
The anti-tumor antibiotic salinomycin (Sal) was recently identified as a selective inhibitor of breast cancer stem cells; however, the effect of Sal on hepatocellular carcinoma (HCC) is not clear. This study aimed to determine the anti-tumor efficacy and mechanism of Sal on HCC. HCC cell lines (HepG2, SMMC-7721, and BEL-7402) were treated with Sal. Cell doubling time was determinated by drawing growth curve, cell viability was evaluated using the Cell Counting Kit 8. The fraction of CD133+ cell subpopulations was assessed by flow cytometry. We found that Sal inhibits proliferation and decreases PCNA levels as well as the proportion of HCC CD133+cell subpopulations in HCC cells. Cell cycle was analyzed using flow cytometry and showed that Sal caused cell cycle arrest of the various HCC cell lines in different phases. Cell apoptosis was evaluated using flow cytometry and Hoechst 33342 staining. Sal induced apoptosis as characterized by an increase in the Bax/Bcl-2 ratio. Several signaling pathways were selected for further mechanistic analyses using real time-PCR and Western blot assays. Compared to control, β-catenin expression is significantly down-regulated upon Sal addition. The Ca2+ concentration in HCC cells was examined by flow cytometry and higher Ca2+ concentrations were observed in Sal treatment groups. The anti-tumor effect of Sal was further verified in vivo using the hepatoma orthotopic tumor model and the data obtained showed that the size of liver tumors in Sal-treated groups decreased compared to controls. Immunohistochemistry and TUNEL staining also demonstrated that Sal inhibits proliferation and induces apoptosis in vivo. Finally, the role of Sal on in vivo Wnt/β-catenin signaling was evaluated by Western blot and immunohistochemistry. This study demonstrates Sal inhibits proliferation and induces apoptosis of HCC cells in vitro and in vivo and one potential mechanism is inhibition of Wnt/β-catenin signaling via increased intracellular Ca2+ levels. 相似文献
13.
Wenting Zhuang Hui Liu Zhize He Jielan Ju Qiuxia Gao Zhiyan Shan Lei Lei 《Current issues in molecular biology》2022,44(6):2431
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with abnormal behavior. However, the pathogenesis of ASD remains to be clarified. It has been demonstrated that miRNAs are essential regulators of ASD. However, it is still unclear how miR-92a-2-5p acts on the developing brain and the cell types directly. In this study, we used neural progenitor cells (NPCs) derived from ASD-hiPSCs as well as from neurotypical controls to examine the effects of miR-92a-2-5p on ASD-NPCs proliferation and neuronal differentiation, and whether miR-92a-2-5p could interact with genetic risk factor, DLG3 for ASD. We observed that miR-92a-2-5p upregulated in ASD-NPCs results in decreased proliferation and neuronal differentiation. Inhibition of miR-92a-2-5p could promote proliferation and neuronal differentiation of ASD-NPCs. DLG3 was negatively regulated by miR-92a-2-5p in NPCs. Our results suggest that miR-92a-2-5p is a strong risk factor for ASD and potentially contributes to neuropsychiatric disorders. 相似文献
14.
Leflunomide as an immunosuppressive drug is generally used in the treatment of rheumatoid arthritis. It inhibits DHODH (dihydroorotate dehydrogenase ), which is one of the essential enzymes in the de novo pyrimidine biosynthetic pathway. Here we showed that leflunomide significantly reduced cell proliferation and self-renewal activity. Annexin V-FITC/PI staining assay revealed that leflunomide induced S-phase cell cycle arrest, and promoted cell apoptosis. In vivo xenograft study in SCID mice showed that leflunomide inhibited tumor growth and development. We also observed that DHODH was commonly expressed in neuroblastoma. When treated with leflunomide, the neuroblastoma cell lines BE(2)-C, SK-N-DZ, and SK-N-F1 showed dramatic inhibition of DHODH at mRNA and protein levels. Considering the favorable toxicity profile and the successful clinical experience with leflunomide in rheumatoid arthritis, this drug represents a potential new candidate for targeted therapy in neuroblastoma. 相似文献
15.
In Vitro and In Vivo Differentiation of Progenitor Stem Cells Obtained After Mechanical Digestion of Human Dental Pulp 下载免费PDF全文
Manuela Monti Antonio Graziano Silvana Rizzo Cesare Perotti Claudia Del Fante Riccardo d'Aquino Carlo Alberto Redi Ruggero Rodriguez y Baena 《Journal of cellular physiology》2017,232(3):548-555
16.
17.
Hee Ra Park Kyoung Hye Kong Byung Pal Yu Mark P. Mattson Jaewon Lee 《The Journal of biological chemistry》2012,287(51):42588-42600
Resveratrol is a phytoalexin and natural phenol that is present at relatively high concentrations in peanuts and red grapes and wine. Based upon studies of yeast and invertebrate models, it has been proposed that ingestion of resveratrol may also have anti-aging actions in mammals including humans. It has been suggested that resveratrol exerts its beneficial effects on health by activating the same cellular signaling pathways that are activated by dietary energy restriction (DR). Some studies have reported therapeutic actions of resveratrol in animal models of metabolic and neurodegenerative disorders. However, the effects of resveratrol on cell, tissue and organ function in healthy subjects are largely unknown. In the present study, we evaluated the potential effects of resveratrol on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of healthy young adult mice. Resveratrol reduced the proliferation of cultured mouse multi-potent NPCs, and activated AMP-activated protein kinase (AMPK), in a concentration-dependent manner. Administration of resveratrol to mice (1–10 mg/kg) resulted in activation of AMPK, and reduced the proliferation and survival of NPCs in the dentate gyrus of the hippocampus. Resveratrol down-regulated the levels of the phosphorylated form of cyclic AMP response element-binding protein (pCREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Finally, resveratrol-treated mice exhibited deficits in hippocampus-dependent spatial learning and memory. Our findings suggest that resveratrol, unlike DR, adversely affects hippocampal neurogenesis and cognitive function by a mechanism involving activation of AMPK and suppression of CREB and BDNF signaling. 相似文献
18.
Si-Min Ma Long-Xia Chen Yi-Feng Lin Hu Yan Jing-Wen Lv Man Xiong Jin Li Guo-Qiang Cheng Yi Yang Zi-Long Qiu Wen-Hao Zhou 《PloS one》2015,10(4)
Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy. 相似文献
19.
Human Serum Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro and In Vivo
Alessandra Pisciotta Massimo Riccio Gianluca Carnevale Francesca Beretti Lara Gibellini Tullia Maraldi Gian Maria Cavallini Adriano Ferrari Giacomo Bruzzesi Anto De Pol 《PloS one》2012,7(11)
Human dental pulp is a promising alternative source of stem cells for cell-based tissue engineering in regenerative medicine, for the easily recruitment with low invasivity for the patient and for the self-renewal and differentiation potential of cells. So far, in vitro culture of mesenchymal stem cells is usually based on supplementing culture and differentiation media with foetal calf serum (FCS). FCS is known to contain a great quantity of growth factors, and thus to promote cell attachment on plastic surface as well as expansion and differentiation. Nevertheless, FCS as an animal origin supplement may represent a potential means for disease transmission besides leading to a xenogenic immune response. Therefore, a significant interest is focused on investigating alternative supplements, in order to obtain a sufficient cell number for clinical application, avoiding the inconvenients of FCS use. In our study we have demonstrated that human serum (HS) is a suitable alternative to FCS, indeed its addition to culture medium induces a high hDPSCs proliferation rate and improves the in vitro osteogenic differentiation. Furthermore, hDPSCs-collagen constructs, pre-differentiated with HS-medium in vitro for 10 days, when implanted in immunocompromised rats, are able to restore critical size parietal bone defects. Therefore these data indicate that HS is a valid substitute for FCS to culture and differentiate in vitro hDPSCs in order to obtain a successful bone regeneration in vivo. 相似文献
20.
Na He Zejian Wang Yin Wang Hanlin Shen Ming Yin 《Cellular and molecular neurobiology》2013,33(8):1149-1157
Neural stem/progenitor cells (NSPCs) of the subgranular zone have been implicated in cognitive processes, which represent a potentially important source of regenerative medicine for the treatment of neurodegenerative diseases such as Alzheimer’s disease (AD). In our previous studies, ZY-1, a novel nicotinic analog, improved cognitive function in transgenic mice model of AD. However, the effect of ZY-1 on the NSPCs remains unclear. Here, we show that ZY-1 significantly increased proliferation and migration of NSPCs, but failed to affect NSPCs differentiation in vitro. Furthermore, during the proliferative period, ZY-1 enhanced intracellular reactive oxygen species (ROS) levels. Meanwhile, ZY-1 also inhibited the levels of Aβ42-induced ROS. Our data indicate that ZY-1 regulates adult hippocampal neurogenesis in vitro, at least partly due to modulating intracellular ROS levels. These results, taken together with those of our previous studies, suggest that ZY-1 might have a potential therapeutic effect for the treatment of AD. 相似文献