首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The problem of locating quantitative trait loci (QTL) for experimental populations can be approached by multiple regression analysis. In this context variable selection using a modification of the Bayesian Information Criterion (mBIC) has been well established in the past. In this article a memetic algorithm (MA) is introduced to find the model which minimizes the selection criterion. Apart from mBIC also a second modification (mBIC2) is considered, which has the property of controlling the false discovery rate. Given the Bayesian nature of our selection criteria, we are not only interested in finding the best model, but also in computing marker posterior probabilities using all models visited by MA. In a simulation study MA (with mBIC and mBIC2) is compared with a parallel genetic algorithm (PGA) which has been previously suggested for QTL mapping. It turns out that MA in combination with mBIC2 performs best, where determining QTL positions based on marker posterior probabilities yields even better results than using the best model selected by MA. Finally we consider a real data set from the literature and show that MA can also be extended to multiple interval mapping, which potentially increases the precision with which the exact location of QTLs can be estimated.  相似文献   

2.
SUMMARY: The modified version of Bayesian Information Criterion (mBIC) is a relatively simple model selection procedure that can be used when locating multiple interacting quantitative trait loci (QTL). Our earlier work demonstrated the statistical properties of mBIC for situations where the average genetic map interval is at least 5 cM. In this work mBIC is adapted to genome searches based on a dense map and, more importantly, to the situation where consecutive QTL and interactions are located by multiple interval mapping. Easy to use formulas for the extended mBIC are given. A simulation study, as well as the analysis of real data, confirm the good properties of the extended mBIC.  相似文献   

3.
GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features. In this article, we compare the linear kernel machine based test (LKM) and principal components analysis based approach (PCA) using simulated datasets under the scenarios of 0 to 3 causal SNPs, as well as simple and complex linkage disequilibrium (LD) structures of the simulated regions. Our simulation study demonstrates that both LKM and PCA can control the type I error at the significance level of 0.05. If the causal SNP is in strong LD with the genotyped SNPs, both the PCA with a small number of principal components (PCs) and the LKM with kernel of linear or identical-by-state function are valid tests. However, if the LD structure is complex, such as several LD blocks in the SNP set, or when the causal SNP is not in the LD block in which most of the genotyped SNPs reside, more PCs should be included to capture the information of the causal SNP. Simulation studies also demonstrate the ability of LKM and PCA to combine information from multiple causal SNPs and to provide increased power over individual SNP analysis. We also apply LKM and PCA to analyze two SNP sets extracted from an actual GWAS dataset on non-small cell lung cancer.  相似文献   

4.
Liu W  Zhao W  Chase GA 《Human heredity》2006,61(1):31-44
OBJECTIVE: Single nucleotide polymorphisms (SNPs) serve as effective markers for localizing disease susceptibility genes, but current genotyping technologies are inadequate for genotyping all available SNP markers in a typical linkage/association study. Much attention has recently been paid to methods for selecting the minimal informative subset of SNPs in identifying haplotypes, but there has been little investigation of the effect of missing or erroneous genotypes on the performance of these SNP selection algorithms and subsequent association tests using the selected tagging SNPs. The purpose of this study is to explore the effect of missing genotype or genotyping error on tagging SNP selection and subsequent single marker and haplotype association tests using the selected tagging SNPs. METHODS: Through two sets of simulations, we evaluated the performance of three tagging SNP selection programs in the presence of missing or erroneous genotypes: Clayton's diversity based program htstep, Carlson's linkage disequilibrium (LD) based program ldSelect, and Stram's coefficient of determination based program tagsnp.exe. RESULTS: When randomly selected known loci were relabeled as 'missing', we found that the average number of tagging SNPs selected by all three algorithms changed very little and the power of subsequent single marker and haplotype association tests using the selected tagging SNPs remained close to the power of these tests in the absence of missing genotype. When random genotyping errors were introduced, we found that the average number of tagging SNPs selected by all three algorithms increased. In data sets simulated according to the haplotype frequecies in the CYP19 region, Stram's program had larger increase than Carlson's and Clayton's programs. In data sets simulated under the coalescent model, Carlson's program had the largest increase and Clayton's program had the smallest increase. In both sets of simulations, with the presence of genotyping errors, the power of the haplotype tests from all three programs decreased quickly, but there was not much reduction in power of the single marker tests. CONCLUSIONS: Missing genotypes do not seem to have much impact on tagging SNP selection and subsequent single marker and haplotype association tests. In contrast, genotyping errors could have severe impact on tagging SNP selection and haplotype tests, but not on single marker tests.  相似文献   

5.
Zak M  Baierl A  Bogdan M  Futschik A 《Genetics》2007,176(3):1845-1854
In previous work, a modified version of the Bayesian information criterion (mBIC) was proposed to locate multiple interacting quantitative trait loci (QTL). Simulation studies and real data analysis demonstrate good properties of the mBIC in situations where the error distribution is approximately normal. However, as with other standard techniques of QTL mapping, the performance of the mBIC strongly deteriorates when the trait distribution is heavy tailed or when the data contain a significant proportion of outliers. In the present article, we propose a suitable robust version of the mBIC that is based on ranks. We investigate the properties of the resulting method on the basis of theoretical calculations, computer simulations, and a real data analysis. Our simulation results show that for the sample sizes typically used in QTL mapping, the methods based on ranks are almost as efficient as standard techniques when the data are normal and are much better when the data come from some heavy-tailed distribution or include a proportion of outliers.  相似文献   

6.
Quantitative traits analyzed in Genome-Wide Association Studies (GWAS) are often nonnormally distributed. For such traits, association tests based on standard linear regression are subject to reduced power and inflated type I error in finite samples. Applying the rank-based inverse normal transformation (INT) to nonnormally distributed traits has become common practice in GWAS. However, the different variations on INT-based association testing have not been formally defined, and guidance is lacking on when to use which approach. In this paper, we formally define and systematically compare the direct (D-INT) and indirect (I-INT) INT-based association tests. We discuss their assumptions, underlying generative models, and connections. We demonstrate that the relative powers of D-INT and I-INT depend on the underlying data generating process. Since neither approach is uniformly most powerful, we combine them into an adaptive omnibus test (O-INT). O-INT is robust to model misspecification, protects the type I error, and is well powered against a wide range of nonnormally distributed traits. Extensive simulations were conducted to examine the finite sample operating characteristics of these tests. Our results demonstrate that, for nonnormally distributed traits, INT-based tests outperform the standard untransformed association test, both in terms of power and type I error rate control. We apply the proposed methods to GWAS of spirometry traits in the UK Biobank. O-INT has been implemented in the R package RNOmni , which is available on CRAN.  相似文献   

7.
Genome-wide association studies (GWAS) for quantitative traits and disease in humans and other species have shown that there are many loci that contribute to the observed resemblance between relatives. GWAS to date have mostly focussed on discovery of genes or regulatory regions habouring causative polymorphisms, using single SNP analyses and setting stringent type-I error rates. Genome-wide marker data can also be used to predict genetic values and therefore predict phenotypes. Here, we propose a Bayesian method that utilises all marker data simultaneously to predict phenotypes. We apply the method to three traits: coat colour, %CD8 cells, and mean cell haemoglobin, measured in a heterogeneous stock mouse population. We find that a model that contains both additive and dominance effects, estimated from genome-wide marker data, is successful in predicting unobserved phenotypes and is significantly better than a prediction based upon the phenotypes of close relatives. Correlations between predicted and actual phenotypes were in the range of 0.4 to 0.9 when half of the number of families was used to estimate effects and the other half for prediction. Posterior probabilities of SNPs being associated with coat colour were high for regions that are known to contain loci for this trait. The prediction of phenotypes using large samples, high-density SNP data, and appropriate statistical methodology is feasible and can be applied in human medicine, forensics, or artificial selection programs.  相似文献   

8.
GCTA: a tool for genome-wide complex trait analysis   总被引:7,自引:0,他引:7  
For most human complex diseases and traits, SNPs identified by genome-wide association studies (GWAS) explain only a small fraction of the heritability. Here we report a user-friendly software tool called genome-wide complex trait analysis (GCTA), which was developed based on a method we recently developed to address the "missing heritability" problem. GCTA estimates the variance explained by all the SNPs on a chromosome or on the whole genome for a complex trait rather than testing the association of any particular SNP to the trait. We introduce GCTA's five main functions: data management, estimation of the genetic relationships from SNPs, mixed linear model analysis of variance explained by the SNPs, estimation of the linkage disequilibrium structure, and GWAS simulation. We focus on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage compensation. The GCTA software is a versatile tool to estimate and partition complex trait variation with large GWAS data sets.  相似文献   

9.
10.
Determination of the relevance of both demanding classical epidemiologic criteria for control selection and robust handling of population stratification (PS) represents a major challenge in the design and analysis of genome-wide association studies (GWAS). Empirical data from two GWAS in European Americans of the Cancer Genetic Markers of Susceptibility (CGEMS) project were used to evaluate the impact of PS in studies with different control selection strategies. In each of the two original case-control studies nested in corresponding prospective cohorts, a minor confounding effect due to PS (inflation factor lambda of 1.025 and 1.005) was observed. In contrast, when the control groups were exchanged to mimic a cost-effective but theoretically less desirable control selection strategy, the confounding effects were larger (lambda of 1.090 and 1.062). A panel of 12,898 autosomal SNPs common to both the Illumina and Affymetrix commercial platforms and with low local background linkage disequilibrium (pair-wise r(2)<0.004) was selected to infer population substructure with principal component analysis. A novel permutation procedure was developed for the correction of PS that identified a smaller set of principal components and achieved a better control of type I error (to lambda of 1.032 and 1.006, respectively) than currently used methods. The overlap between sets of SNPs in the bottom 5% of p-values based on the new test and the test without PS correction was about 80%, with the majority of discordant SNPs having both ranks close to the threshold. Thus, for the CGEMS GWAS of prostate and breast cancer conducted in European Americans, PS does not appear to be a major problem in well-designed studies. A study using suboptimal controls can have acceptable type I error when an effective strategy for the correction of PS is employed.  相似文献   

11.
Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.  相似文献   

12.

Background

Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis is how to effectively select a subset of SNPs with promising association signals from the SNP set.

Results

We developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis and identified MACROD2-AS1 with genome-wide significance (p-value= 2.5 × 10− 6).

Conclusions

Our simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1620-3) contains supplementary material, which is available to authorized users.  相似文献   

13.
Genome-wide association studies (GWAS) have detected many disease associations. However, the reported variants tend to explain small fractions of risk, and there are doubts about issues such as the portability of findings over different ethnic groups or the relative roles of rare versus common variants in the genetic architecture of complex disease. Studying the degree of sharing of disease-associated variants across populations can help in solving these issues. We present a comprehensive survey of GWAS replicability across 28 diseases. Most loci and SNPs discovered in Europeans for these conditions have been extensively replicated using peoples of European and East Asian ancestry, while the replication with individuals of African ancestry is much less common. We found a strong and significant correlation of Odds Ratios across Europeans and East Asians, indicating that underlying causal variants are common and shared between the two ancestries. Moreover, SNPs that failed to replicate in East Asians map into genomic regions where Linkage Disequilibrium patterns differ significantly between populations. Finally, we observed that GWAS with larger sample sizes have detected variants with weaker effects rather than with lower frequencies. Our results indicate that most GWAS results are due to common variants. In addition, the sharing of disease alleles and the high correlation in their effect sizes suggest that most of the underlying causal variants are shared between Europeans and East Asians and that they tend to map close to the associated marker SNPs.  相似文献   

14.
Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.  相似文献   

15.
Genome-wide association studies (GWAS) have successfully identified many genetic variants associated with complex diseases and traits. However, functional consequence of genetic variants studied in GWAS is not yet fully investigated, which would hinder the application of GWAS. We therefore performed a systematic functional analysis of HapMap SNPs, which have been most commonly used as the reference panel for GWAS. Our study highlights several characteristics of HapMap SNPs and identifies subsets of genetic variants with interesting functional implication. The results show that HapMap SNPs have good coverage within RefSeq genes, especially within known disease-related genes. On the other hand, only a small percentage of SNPs are non-synonymous SNPs while many SNPs are actually located at gene deserts. Moreover, many functionally important variants are not yet still interrogated. A redesigned SNP reference panel with additional functionally important variants would be useful to identify disease-causal variants in the future genome-wide studies.  相似文献   

16.
Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.  相似文献   

17.
Casto AM  Feldman MW 《PLoS genetics》2011,7(1):e1001266
Genome-wide association studies (GWAS) have identified more than 2,000 trait-SNP associations, and the number continues to increase. GWAS have focused on traits with potential consequences for human fitness, including many immunological, metabolic, cardiovascular, and behavioral phenotypes. Given the polygenic nature of complex traits, selection may exert its influence on them by altering allele frequencies at many associated loci, a possibility which has yet to be explored empirically. Here we use 38 different measures of allele frequency variation and 8 iHS scores to characterize over 1,300 GWAS SNPs in 53 globally distributed human populations. We apply these same techniques to evaluate SNPs grouped by trait association. We find that groups of SNPs associated with pigmentation, blood pressure, infectious disease, and autoimmune disease traits exhibit unusual allele frequency patterns and elevated iHS scores in certain geographical locations. We also find that GWAS SNPs have generally elevated scores for measures of allele frequency variation and for iHS in Eurasia and East Asia. Overall, we believe that our results provide evidence for selection on several complex traits that has caused changes in allele frequencies and/or elevated iHS scores at a number of associated loci. Since GWAS SNPs collectively exhibit elevated allele frequency measures and iHS scores, selection on complex traits may be quite widespread. Our findings are most consistent with this selection being either positive or negative, although the relative contributions of the two are difficult to discern. Our results also suggest that trait-SNP associations identified in Eurasian samples may not be present in Africa, Oceania, and the Americas, possibly due to differences in linkage disequilibrium patterns. This observation suggests that non-Eurasian and non-East Asian sample populations should be included in future GWAS.  相似文献   

18.
Genome-wide association studies (GWAS) are designed to identify the portion of single-nucleotide polymorphisms (SNPs) in genome sequences associated with a complex trait. Strategies based on the gene list enrichment concept are currently applied for the functional analysis of GWAS, according to which a significant overrepresentation of candidate genes associated with a biological pathway is used as a proxy to infer overrepresentation of candidate SNPs in the pathway. Here we show that such inference is not always valid and introduce the program SNP2GO, which implements a new method to properly test for the overrepresentation of candidate SNPs in biological pathways.  相似文献   

19.
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t''V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups.  相似文献   

20.
Calving in cattle is affected by calf morphology and by dam characteristics. It is described by two different traits: maternal calving ease, which is the ability to generate dams with good physiological predisposition to calving, and direct calving ease, which is the ability to generate calves that are easily born. The aim of this study was to identify regions of cattle genome harboring genes possibly affecting direct calving ease in the Piedmontese cattle breed. A population of 323 bulls scored for direct calving ease (EBV) was analyzed by a medium-density SNP marker panel (54,001 SNPs) to perform a genome-wide scan. The strongest signal was detected on chromosome 6 between 37.8 and 38.7 Mb where 13 SNPs associated to direct calving ease were found. Three genes are located in this region: LAP3, encoding for a leucine aminopeptidase involved in the oxytocin hydrolysis; NCAPG, encoding for a non-SMC condensin I complex, which has been associated in cattle with fetal growth and carcass size; and LCORL, which has been associated to height in humans and cattle. To further confirm the results of the genome-wide scan we genotyped additional SNPs within these genes and analyzed their association with direct calving ease. The results of this additional analysis fully confirmed the findings of the GWAS and particularly indicated LAP3 as the most probable gene involved. Linkage Disequilibrium (LD) analysis showed high correlation between SNPs located within LAP3 and LCORL indicating a possible selection signature due either to increased fitness or breeders’ selection for the trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号