首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.  相似文献   

2.
Chromothripsis represents an extreme class of complex chromosome rearrangements (CCRs) with major effects on chromosomal architecture. Although recent studies have associated chromothripsis with congenital abnormalities, the incidence and pathogenic effects of this phenomenon require further investigation. Here, we analyzed the genomes of three families in which chromothripsis rearrangements were transmitted from a mother to her child. The chromothripsis in the mothers resulted in completely balanced rearrangements involving 8–23 breakpoint junctions across three to five chromosomes. Two mothers did not show any phenotypic abnormalities, although 3–13 protein-coding genes were affected by breakpoints. Unbalanced but stable transmission of a subset of the derivative chromosomes caused apparently de novo complex copy-number changes in two children. This resulted in gene-dosage changes, which are probably responsible for the severe congenital phenotypes of these two children. In contrast, the third child, who has a severe congenital disease, harbored all three chromothripsis chromosomes from his healthy mother, but one of the chromosomes acquired de novo rearrangements leading to copy-number changes. These results show that the human genome can tolerate extreme reshuffling of chromosomal architecture, including breakage of multiple protein-coding genes, without noticeable phenotypic effects. The presence of chromothripsis in healthy individuals affects reproduction and is expected to substantially increase the risk of miscarriages, abortions, and severe congenital disease.  相似文献   

3.
Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ~25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.  相似文献   

4.

Background

Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.

Results

We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.

Conclusions

We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.  相似文献   

5.

Background

Chromosomal breakage followed by faulty DNA repair leads to gene amplifications and deletions in cancers. However, the mere assessment of the extent of genomic changes, amplifications and deletions may reduce the complexity of genomic data observed by array comparative genomic hybridization (array CGH). We present here a novel approach to array CGH data analysis, which focuses on putative breakpoints responsible for rearrangements within the genome.

Results

We performed array comparative genomic hybridization in 29 primary tumors from high risk patients with breast cancer. The specimens were flow sorted according to ploidy to increase tumor cell purity prior to array CGH. We describe the number of chromosomal breaks as well as the patterns of breaks on individual chromosomes in each tumor. There were differences in chromosomal breakage patterns between the 3 clinical subtypes of breast cancers, although the highest density of breaks occurred at chromosome 17 in all subtypes, suggesting a particular proclivity of this chromosome for breaks. We also observed chromothripsis affecting various chromosomes in 41% of high risk breast cancers.

Conclusions

Our results provide a new insight into the genomic complexity of breast cancer. Genomic instability dependent on chromosomal breakage events is not stochastic, targeting some chromosomes clearly more than others. We report a much higher percentage of chromothripsis than described previously in other cancers and this suggests that massive genomic rearrangements occurring in a single catastrophic event may shape many breast cancer genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-579) contains supplementary material, which is available to authorized users.  相似文献   

6.
Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.  相似文献   

7.
8.
"染色体粉碎"是最初在肿瘤细胞中发现的一种复杂的基因组重排现象.在该事件中,细胞的一条或几条染色体在短时间内发生大量的DNA双链断裂,形成小的DNA碎片,之后这些碎片被细胞的DNA修复机制随机地拼接起来,形成新的染色体.染色体粉碎事件会造成大量的基因组重排,引起DNA拷贝数的变异和基因融合,从而导致正常细胞向肿瘤细胞的快速转化.这与传统的癌症发生理论不同,传统理论认为肿瘤的发生是由基因突变逐步积累而导致的,因此染色体粉碎现象可能揭示了一种肿瘤发生的新机制.目前,该现象的内在机制还不完全清楚,其判别标准也存在争议.本文综述了近年来关于染色体粉碎现象的判别标准和产生机制,探讨了该现象与肿瘤发生发展的关系,为进一步研究染色体粉碎事件提供参考.  相似文献   

9.

Background

Intellectual disability (ID) affects 2–3% of the population and may occur with or without multiple congenital anomalies (MCA) or other medical conditions. Established genetic syndromes and visible chromosome abnormalities account for a substantial percentage of ID diagnoses, although for ∼50% the molecular etiology is unknown. Individuals with features suggestive of various syndromes but lacking their associated genetic anomalies pose a formidable clinical challenge. With the advent of microarray techniques, submicroscopic genome alterations not associated with known syndromes are emerging as a significant cause of ID and MCA.

Methodology/Principal Findings

High-density SNP microarrays were used to determine genome wide copy number in 42 individuals: 7 with confirmed alterations in the WS region but atypical clinical phenotypes, 31 with ID and/or MCA, and 4 controls. One individual from the first group had the most telomeric gene in the WS critical region deleted along with 2 Mb of flanking sequence. A second person had the classic WS deletion and a rearrangement on chromosome 5p within the Cri du Chat syndrome (OMIM:123450) region. Six individuals from the ID/MCA group had large rearrangements (3 deletions, 3 duplications), one of whom had a large inversion associated with a deletion that was not detected by the SNP arrays.

Conclusions/Significance

Combining SNP microarray analyses and qPCR allowed us to clone and sequence 21 deletion breakpoints in individuals with atypical deletions in the WS region and/or ID or MCA. Comparison of these breakpoints to databases of genomic variation revealed that 52% occurred in regions harboring structural variants in the general population. For two probands the genomic alterations were flanked by segmental duplications, which frequently mediate recurrent genome rearrangements; these may represent new genomic disorders. While SNP arrays and related technologies can identify potentially pathogenic deletions and duplications, obtaining sequence information from the breakpoints frequently provides additional information.  相似文献   

10.
Balanced complex chromosome rearrangements (CCR) are extremely rare in humans. They are usually ascertained either by abnormal phenotype or reproductive failure in carriers. These abnormalities are attributed to disruption of genes at the breakpoints, position effect or cryptic imbalances in the genome. However, little is known about possible imbalances at the junction points. We report here a patient with a CCR involving three chromosomes (2;10;11) and eight breakpoints. The patient presented with behavioural problems as the sole phenotypic abnormality. The rearrangement, which is apparently balanced in G-banding and multicolour FISH, was shown by genomic array analysis to include a deletion of 0.15–1.5 Mb associated with one of the breakpoints. To explain the formation of this rearrangement through the smallest possible number of breakage-and-reunion events, one has to assume that the breaks have not occurred simultaneously, but in a temporal order within the span of a single cell division. We demonstrate that array comparative genomic hybridisation (CGH) is a useful complementary tool to cytogenetic analysis for detecting and mapping cryptic imbalances associated with chromosome rearrangement.  相似文献   

11.
The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.  相似文献   

12.
Lowden MR  Meier B  Lee TW  Hall J  Ahmed S 《Genetics》2008,180(2):741-754
Critically shortened telomeres can be subjected to DNA repair events that generate end-to-end chromosome fusions. The resulting dicentric chromosomes can enter breakage–fusion–bridge cycles, thereby impeding elucidation of the structures of the initial fusion events and a mechanistic understanding of their genesis. Current models for the molecular basis of fusion of critically shortened, uncapped telomeres rely on PCR assays that typically capture fusion breakpoints created by direct ligation of chromosome ends. Here we use independent approaches that rely on distinctive features of Caenorhabditis elegans to study the frequency of direct end-to-end chromosome fusion in telomerase mutants: (1) holocentric chromosomes that allow for genetic isolation of stable end-to-end fusions and (2) unique subtelomeric sequences that allow for thorough PCR analysis of samples of genomic DNA harboring multiple end-to-end fusions. Surprisingly, only a minority of end-to-end fusion events resulted from direct end joining with no additional genome rearrangements. We also demonstrate that deficiency for the C. elegans Ku DNA repair heterodimer does not affect telomere length or cause synthetic effects in the absence of telomerase.  相似文献   

13.
Recently there has been an increased interest in large-scale genomic variation and clinically in the consequences of haploinsufficiency of genomic segments or disruption of normal gene function by chromosome rearrangements. Here, we present an extraordinary case in which both mother and daughter presented with unexpected chromosomal rearrangement complexity, which we characterized with array-CGH, array painting and multicolor large insert clone hybridizations. We found the same 12 breakpoints involving four chromosomes in both mother and daughter. In addition, the daughter inherited a microdeletion from her father. We mapped all breakpoints to the resolution level of breakpoint spanning clones. Genes were found within 7 of the 12 breakpoint regions, some of which were disrupted by the chromosome rearrangement. One of the rearrangements disrupted a locus, which has been discussed as a quantitative trait locus for fetal hemoglobin expression in adults. Interestingly, both mother and daughter show persistent fetal hemoglobin levels. We detail the most complicated familial complex chromosomal rearrangement reported to date and thus an extreme example of inheritance of chromosomal rearrangements without error in meiotic segregation. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon–human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.  相似文献   

15.
Chromosome rearrangements may result in fusion genes that encode chimeric proteins. The break-points of many such rearrangements cluster in definite genomic regions. In addition, many breakpoint clusters contain specific genomic elements, such as topoisomerase II consensus sites, nuclear matrix attachment sites, and various nucleotide sequences capable of assuming noncanonical secondary structure. Studies on breakpoint location are reviewed in terms of the available data on chromatin structure. In addition, the relationship between the location of breakpoints and the domain organization of the respective proteins, which has not been dealt with in published studies, is analyzed. The possible mechanisms of chromosome rearrangements are discussed.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 355–363.Original Russian Text Copyright © 2005 by Umanskaya, Bystritskiy, Razin.  相似文献   

16.
Schoen DJ 《Genetics》2000,154(2):943-952
Estimates of the number of chromosomal breakpoints that have arisen (e.g., by translocation and inversion) in the evolutionary past between two species and their common ancestor can be made by comparing map positions of marker loci. Statistical methods for doing so are based on a random-breakage model of chromosomal rearrangement. The model treats all modes of chromosome rearrangement alike, and it assumes that chromosome boundaries and breakpoints are distributed randomly along a single genomic interval. Here we use simulation and numerical analysis to test the validity of these model assumptions. Mean estimates of numbers of breakpoints are close to those expected under the random-breakage model when marker density is high relative to the amount of chromosomal rearrangement and when rearrangements occur by translocation alone. But when marker density is low relative to the number of chromosomes, and when rearrangements occur by both translocation and inversion, the number of breakpoints is underestimated. The underestimate arises because rearranged segments may contain markers, yet the rearranged segments may, nevertheless, be undetected. Variances of the estimate of numbers of breakpoints decrease rapidly as markers are added to the comparative maps, but are less influenced by the number or type of chromosomal rearrangement separating the species. Variances obtained with simulated genomes comprised of chromosomes of equal length are substantially lower than those obtained when chromosome size is unconstrained. Statistical power for detecting heterogeneity in the rate of chromosomal rearrangement is also investigated. Results are interpreted with respect to the amount of marker information required to make accurate inferences about chromosomal evolution.  相似文献   

17.
Human and chimpanzee karyotypes differ by virtue of nine pericentric inversions that serve to distinguish human chromosomes 1, 4, 5, 9, 12, 15, 16, 17, and 18 from their chimpanzee orthologues. In this study, we have analysed the breakpoints of the pericentric inversion characteristic of chimpanzee chromosome 4, the homologue of human chromosome 5. Breakpoint-spanning BAC clones were identified from both the human and chimpanzee genomes by fluorescence in situ hybridisation, and the precise locations of the breakpoints were determined by sequence comparisons. In stark contrast to some other characterised evolutionary rearrangements in primates, this chimpanzee-specific inversion appears not to have been mediated by either gross segmental duplications or low-copy repeats, although micro-duplications were found adjacent to the breakpoints. However, alternating purine–pyrimidine (RY) tracts were detected at the breakpoints, and such sequences are known to adopt non-B DNA conformations that are capable of triggering DNA breakage and genomic rearrangements. Comparison of the breakpoint region of human chromosome 5q15 with the orthologous regions of the chicken, mouse, and rat genomes, revealed similar but non-identical syntenic disruptions in all three species. The clustering of evolutionary breakpoints within this chromosomal region, together with the presence of multiple pathological breakpoints in the vicinity of both 5p15 and 5q15, is consistent with the non-random model of chromosomal evolution and suggests that these regions may well possess intrinsic features that have served to mediate a variety of genomic rearrangements, including the pericentric inversion in chimpanzee chromosome 4.  相似文献   

18.
19.
Neuroblastomas (NBs) are tumours of the sympathetic nervous system accounting for 8–10% of paediatric cancers. NBs exhibit extensive intertumour genetic heterogeneity, but their extent of intratumour genetic diversity has remained unexplored. We aimed to assess intratumour genetic variation in NBs with a focus on whole chromosome changes and their underlying mechanism. Allelic ratios obtained by SNP-array data from 30 aneuploid primary NBs and NB cell lines were used to quantify the size of clones harbouring specific genomic imbalances. In 13 cases, this was supplemented by fluorescence in situ hybridisation to assess copy number diversity in detail. Computer simulations of different mitotic segregation errors, single cell cloning, analysis of mitotic figures, and time lapse imaging of dividing NB cells were used to infer the most likely mechanism behind intratumour variation in chromosome number. Combined SNP array and FISH analyses showed that all cases exhibited higher inter-cellular copy number variation than non-neoplastic control tissue, with up to 75% of tumour cells showing non-modal chromosome copy numbers. Comparisons of copy number profiles, resulting from simulations of different segregation errors to genomic profiles of 120 NBs indicated that loss of chromosomes from a tetraploid state was more likely than other mechanisms to explain numerical aberrations in NB. This was supported by a high frequency of lagging chromosomes at anaphase and polyploidisation events in growing NB cells. The dynamic nature of numerical aberrations was corroborated further by detecting substantial copy number diversity in cell populations grown from single NB cells. We conclude that aneuploid NBs typically show extensive intratumour chromosome copy number diversity, and that this phenomenon is most likely explained by continuous loss of chromosomes from a polyploid state.  相似文献   

20.

Background

By reshuffling genomes, structural genomic reorganizations provide genetic variation on which natural selection can work. Understanding the mechanisms underlying this process has been a long-standing question in evolutionary biology. In this context, our purpose in this study is to characterize the genomic regions involved in structural rearrangements between human and macaque genomes and determine their influence on meiotic recombination as a way to explore the adaptive role of genome shuffling in mammalian evolution.

Results

We first constructed a highly refined map of the structural rearrangements and evolutionary breakpoint regions in the human and rhesus macaque genomes based on orthologous genes and whole-genome sequence alignments. Using two different algorithms, we refined the genomic position of known rearrangements previously reported by cytogenetic approaches and described new putative micro-rearrangements (inversions and indels) in both genomes. A detailed analysis of the rhesus macaque genome showed that evolutionary breakpoints are in gene-rich regions, being enriched in GO terms related to immune system. We also identified defense-response genes within a chromosome inversion fixed in the macaque lineage, underlying the relevance of structural genomic changes in evolutionary and/or adaptation processes. Moreover, by combining in silico and experimental approaches, we studied the recombination pattern of specific chromosomes that have suffered rearrangements between human and macaque lineages.

Conclusions

Our data suggest that adaptive alleles – in this case, genes involved in the immune response – might have been favored by genome rearrangements in the macaque lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-530) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号