首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-linked glucosylation of thymine in DNA (base J) is an important regulatory epigenetic mark in trypanosomatids. β-d-glucopyranosyloxymethyluracil (base J) synthesis is initiated by the JBP1/2 enzymes that hydroxylate thymine, forming 5-hydroxymethyluracil (hmU). hmU is then glucosylated by a previously unknown glucosyltransferase. A recent computational screen identified a possible candidate for the base J-associated glucosyltransferase (JGT) in trypanosomatid genomes. We demonstrate that recombinant JGT utilizes uridine diphosphoglucose to transfer glucose to hmU in the context of dsDNA. Mutation of conserved residues typically involved in glucosyltransferase catalysis impairs DNA glucosylation in vitro. The deletion of both alleles of JGT from the genome of Trypanosoma brucei generates a cell line that completely lacks base J. Reintroduction of JGT in the JGT KO restores J synthesis. Ablation of JGT mRNA levels by RNAi leads to the sequential reduction in base J and increased levels of hmU that dissipate rapidly. The analysis of JGT function confirms the two-step J synthesis model and demonstrates that JGT is the only glucosyltransferase enzyme required for the second step of the pathway. Similar to the activity of the related Ten-Eleven Translocation (TET) family of dioxygenases on 5mC, our studies also suggest the ability of the base J-binding protein enzymes to catalyze iterative oxidation of thymine in trypanosome DNA. Here we discuss the regulation of hmU and base J formation in the trypanosome genome by JGT and base J-binding protein.  相似文献   

2.
Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G·T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten–eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme–product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme–substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme–product complex.  相似文献   

3.
The base analog 6-N-hydroxylaminopurine (HAP) induces bidirectional GC -> AT and AT -> GC transitions that are enhanced in DNA polymerase ε and δ 3' -> 5' exonuclease-deficient yeast mutants, pol2-4 and pol3-01, respectively. We have constructed a set of isogenic strains to determine whether the DNA polymerases δ and ε contribute equally to proofreading of replication errors provoked by HAP during leading and lagging strand DNA synthesis. Site-specific GC -> AT and AT -> GC transitions in a Pol(+), pol2-4 or pol3-01 genetic background were scored as reversions of ura3 missense alleles. At each site, reversion was increased in only one proofreading-deficient mutant, either pol2-4 or pol3-01, depending on the DNA strand in which HAP incorporation presumably occurred. Measurement of the HAP-induced reversion frequency of the ura3 alleles placed into chromosome III near to the defined active replication origin ARS306 in two orientations indicated that DNA polymerases ε and δ correct HAP-induced DNA replication errors on opposite DNA strands.  相似文献   

4.
The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to >95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.  相似文献   

5.
Characterization of immune responses induced by live attenuated simian immunodeficiency virus (SIV) strains may yield clues to the nature of protective immunity induced by this vaccine approach. We investigated the ability of CD8+ T lymphocytes from rhesus macaques immunized with the live, attenuated SIV strain SIVmac239Δnef or SIVmac239Δ3 to inhibit SIV replication. CD8+ T lymphocytes from immunized animals were able to potently suppress SIV replication in autologous SIV-infected CD4+ T cells. Suppression of SIV replication by unstimulated CD8+ T cells required direct contact and was major histocompatibility complex (MHC) restricted. However, CD3-stimulated CD8+ T cells produced soluble factors that inhibited SIV replication in an MHC-unrestricted fashion as much as 30-fold. Supernatants from stimulated CD8+ T cells were also able to inhibit replication of both CCR5- and CXCR4-dependent human immunodeficiency virus type 1 (HIV-1) strains. Stimulation of CD8+ cells with cognate cytotoxic T-lymphocyte epitopes also induced secretion of soluble factors able to inhibit SIV replication. Production of RANTES, macrophage inhibitory protein 1α (MIP-1α), or MIP-1β from stimulated CD8+ T cells of vaccinated animals was almost 10-fold higher than that from stimulated CD8+ T cells of control animals. However, addition of antibodies that neutralize these β-chemokines, either alone or in combination, only partly blocked inhibition of SIV and HIV replication by soluble factors produced by stimulated CD8+ T cells. Our results indicate that inhibition of SIV replication by CD8+ T cells from animals immunized with live attenuated SIV strains involves both MHC-restricted and -unrestricted mechanisms and that MHC-unrestricted inhibition of SIV replication is due principally to soluble factors other than RANTES, MIP-1α, and MIP-1β.  相似文献   

6.
Comparative mutagenesis of 1,N6-ethenoadenine (εA) and 8-oxoguanine (8-oxoG), two endogenous DNA lesions that are also formed by exogenous DNA damaging agents, have been evaluated in HeLa and xeroderma pigmentosum variant (XPV) cell extracts. Two-dimensional gel electrophoresis of the duplex M13mp2SV vector containing these lesions established that there was significant inhibition of replication fork movement past εA, whereas 8-oxoG caused only minor stalling of fork progression. In extracts of HeLa cells, εA was weakly mutagenic inducing all three base substitutions in approximately equal frequency, whereas 8-oxoG was 10-fold more mutagenic inducing primarily G→T transversions. These data suggest that 8-oxoG is a miscoding lesion that presents a minimal, if any, block to DNA replication in human cells. We hypothesized that bypass of εA proceeded principally by an error-free mechanism in which the undamaged strand was used as a template, since this lesion strongly blocked fork progression. To examine this, we determined the sequence of replication products derived from templates in which a G was placed across from the εA. Consistent with our hypothesis, 93% of the progeny were derived from replication of the undamaged strand. When translesion synthesis occurred, εA→T mutations increased 3-fold in products derived from the mismatched εA: G construct compared with those derived from the εA: T construct. More efficient repair of εA in the εA: T construct may have been responsible for lower mutation frequency. Primer extension studies with purified pol η have shown that this polymerase is highly error-prone when bypassing εA. To examine if pol η is the primary mutagenic translesion polymerase in human cells, we determined the lesion bypass characteristics of extracts derived from XPV cells, which lack this polymerase. The εA: T construct induced εA→G and εA→C mutant frequencies that were approximately the same as those observed using the HeLa extracts. However, εA→T events were increased 5-fold relative to HeLa extracts. These data support a model in which pol η-mediated translesion synthesis past this adduct is error-free in the context of semiconservative replication in the presence of fidelity factors such as PCNA.  相似文献   

7.
Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1), previously thought to be a backup enzyme for uracil-DNA glycosylase, has recently been shown to excise 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU) bearing an oxidized group at ring C5 as well as an uracil. In the present study, we used site-directed mutagenesis to construct a series of mutants of human SMUG1 (hSMUG1), and tested their activity for uracil, hoU, hmU, fU and other bases to elucidate the catalytic and damage-recognition mechanism of hSMUG1. The functional analysis of the mutants, together with the homology modeling of the hSMUG1 structure based on that determined recently for Xenopus laevis SMUG1, revealed the crucial residues for the rupture of the N-glycosidic bond (Asn85 and His239), discrimination of pyrimidine rings through π–π stacking to the base (Phe98) and specific hydrogen bonds to the Watson–Crick face of the base (Asn163) and exquisite recognition of the C5 substituent through water-bridged (uracil) or direct (hoU, hmU and fU) hydrogen bonds (Gly87–Met91). Integration of the present results and the structural data elucidates how hSMUG1 accepts uracil, hoU, hmU and fU as substrates, but not other oxidized pyrimidines such as 5-hydroxycytosine, 5-formylcytosine and thymine glycol, and intact pyrimidines such as thymine and cytosine.  相似文献   

8.
The ββα-Me restriction endonuclease (REase) Hpy99I recognizes the CGWCG target sequence and cleaves it with unusual stagger (five nucleotide 5′-recessed ends). Here we present the crystal structure of the specific complex of the dimeric enzyme with DNA. The Hpy99I protomer consists of an antiparallel β-barrel and two β4α2 repeats. Each repeat coordinates a structural zinc ion with four cysteine thiolates in two CXXC motifs. The ββα-Me region of the second β4α2 repeat holds the catalytic metal ion (or its sodium surrogate) via Asp148 and Asn165 and activates a water molecule with the general base His149. In the specific complex, Hpy99I forms a ring-like structure around the DNA that contacts DNA bases on the major and minor groove sides via the first and second β4α2 repeats, respectively. Hpy99I interacts with the central base pair of the recognition sequence only on the minor groove side, where A:T resembles T:A and G:C is similar to C:G. The Hpy99I–DNA co-crystal structure provides the first detailed illustration of the ββα-Me site in REases and complements structural information on the use of this active site motif in other groups of endonucleases such as homing endonucleases (e.g. I-PpoI) and Holliday junction resolvases (e.g. T4 endonuclease VII).  相似文献   

9.
Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.  相似文献   

10.
The cytosine base in DNA undergoes hydrolytic deamination at a considerable rate when UV radiation induces formation of a cyclobutane pyrimidine dimer (CPD) with an adjacent pyrimidine base. We have synthesized a phosphoramidite building block of a cissyn cyclobutane thymine–uracil dimer (T[]U), which is the deaminated form of the CPD at a TC site, and incorporated it into oligodeoxyribonucleotides. The previously reported method for synthesis of the thymine dimer (T[]T) was applied, using partially protected thymidylyl-(3′–5′)-2′-deoxyuridine as the starting material, and after triplet- sensitized irradiation, the configuration of the base moiety in the major product was determined by NMR spectroscopy. Presence of the cissyn cyclobutane dimer in the obtained oligonucleotides was confirmed by UV photoreversal and reaction with T4 endonuclease V. Using a 30mer containing T[]U, translesion synthesis by human DNA polymerase η was analyzed. There was no difference in the results between the templates containing T[]T and T[]U and pol η bypassed both lesions with the same efficiency, incorporating two adenylates. This enzyme showed fidelity to base pair formation, but this replication causes a C→T transition because the original sequence is TC.  相似文献   

11.
During nuclear DNA replication, proofreading-deficient DNA polymerase α (Pol α) initiates Okazaki fragment synthesis with lower fidelity than bulk replication by proofreading-proficient Pol δ or Pol ε. Here, we provide evidence that the exonuclease activity of mammalian flap endonuclease (FEN1) excises Pol α replication errors in a MutSα-dependent, MutLα-independent mismatch repair process we call Pol α-segment error editing (AEE). We show that MSH2 interacts with FEN1 and facilitates its nuclease activity to remove mismatches near the 5′ ends of DNA substrates. Mouse cells and mice encoding FEN1 mutations display AEE deficiency, a strong mutator phenotype, enhanced cellular transformation, and increased cancer susceptibility. The results identify a novel role for FEN1 in a specialized mismatch repair pathway and a new cancer etiological mechanism.  相似文献   

12.
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants.  相似文献   

13.
In fulfilling its biosynthetic roles in nuclear replication and in several types of repair, DNA polymerase δ (pol δ) is assisted by replication protein A (RPA), the single-stranded DNA-binding protein complex, and by the processivity clamp proliferating cell nuclear antigen (PCNA). Here we report the effects of these accessory proteins on the fidelity of DNA synthesis in vitro by yeast pol δ. We show that when RPA and PCNA are included in reactions containing pol δ, rates for single base errors are similar to those generated by pol δ alone, indicating that pol δ itself is by far the prime determinant of fidelity for single base errors. However, the rate of deleting multiple nucleotides between directly repeated sequences is reduced by ~10-fold in the presence of either RPA or PCNA, and by ≥90-fold when both proteins are present. We suggest that PCNA and RPA suppress large deletion errors by preventing the primer terminus at a repeat from fraying and/or from relocating and annealing to a downstream repeat. Strong suppression of deletions by PCNA and RPA suggests that they may contribute to the high replication fidelity needed to stably maintain eukaryotic genomes that contain abundant repetitive sequences.  相似文献   

14.
Recent studies have demonstrated that the β-chemokines RANTES, MIP-1α, and MIP-1β suppress human immunodeficiency virus type 1 (HIV-1) replication in vitro and may play an important role in protecting exposed but uninfected individuals from HIV-1 infection. However, levels of β-chemokines in AIDS patients are comparable to and can exceed levels in nonprogressing individuals, indicating that global β-chemokine production may have little effect on HIV-1 disease progression. We sought to clarify the role of β-chemokines in nonprogressors and AIDS patients by examination of β-chemokine production and HIV-1 infection in patient T-lymphocyte clones established by herpesvirus saimiri immortalization. Both CD4+ and CD8+ clones were established, and they resembled primary T cells in their phenotypes and expression of activated T-cell markers. CD4+ T-cell clones from all patients had normal levels of mRNA-encoding CCR5, a coreceptor for non-syncytium-inducing (NSI) HIV-1. CD4+ clones from nonprogressors and CD8+ clones from AIDS patients secreted high levels of RANTES, MIP1α, and MIP-1β. In contrast, CD4+ clones from AIDS patients produced no RANTES and little or no MIP-1α or MIP-1β. The infection of CD4+ clones with the NSI HIV-1 strain ADA revealed an inverse correlation to β-chemokine production; clones from nonprogressors were poorly susceptible to ADA replication, but clones from AIDS patients were highly infectable. The resistance to ADA infection in CD4+ clones from nonprogressors could be partially reversed by treatment with anti-β-chemokine antibodies. These results indicate that CD4+ cells can be protected against NSI-HIV-1 infection in culture through endogenously produced factors, including β-chemokines, and that β-chemokine production by CD4+, but not CD8+, T cells may constitute one mechanism of disease-free survival for HIV-1-infected individuals.  相似文献   

15.
DNA polymerase ε (pol ε) is believed to be the leading strand replicase in eukaryotes whereas pols λ and β are thought to be mainly involved in re-synthesis steps of DNA repair. DNA elongation by the human pol ε is halted by an abasic site (apurinic/apyrimidinic (AP) site). We have previously reported that human pols λ, β and η can perform translesion synthesis (TLS) of an AP site in the presence of pol ε. In the case of pol λ and β, this TLS requires the presence of a gap downstream from the product synthetized by the ε replicase. However, since these studies were conducted exclusively with a linear DNA template, we decided to test whether the structure of the template could influence the capacity of the pols ε, λ, β and η to perform TLS of an AP site. Therefore, we have investigated the replication of damaged “minicircle” DNA templates. In addition, replication of circular DNA requires, beyond DNA pols, the processivity clamp PCNA, the clamp loader replication factor C (RFC), and the accessory proteins replication protein A (RPA). Finally we have compared the capacity of unmodified versus monoubiquitinated PCNA in sustaining TLS by pols λ and η on a circular template. Our results indicate that in vitro gap-directed TLS synthesis by pols λ and β in the presence of pol ε, RPA and PCNA is unaffected by the structure of the DNA template. Moreover, monoubiquitination of PCNA does not affect TLS by pol λ while it appears to slightly stimulate TLS by pol η.  相似文献   

16.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

17.
The Wnt/β-catenin pathway is involved in cell functions governing development and disease. In modeling postentry restriction of human immunodeficiency virus (HIV) replication in astrocytes, we reported that part of this natural resistance to productive replication of HIV in astrocytes involved expression of proteins of the Wnt/β-catenin signaling pathway. We determined here whether induction of β-catenin signaling in peripheral blood mononuclear cells (PBMCs) can modulate HIV replication. Given that lithium is an inducer of β-catenin signaling, we used it as a tool to determine the impact of β-catenin signaling on HIV replication in PBMCs. We demonstrated that lithium inhibited the replication of T-tropic and primary isolates of HIV by >90% and did so in noncytotoxic/noncytostatic concentrations and in a β-catenin-dependent manner. Specifically, inhibiting β-catenin signaling by transfection of dominant-negative mutant constructs to either T-cell factor 4, the downstream effector of Wnt signaling, or β-catenin, the central mediator of this pathway, abrogated the ability of lithium to inhibit HIV replication. Moreover, when Wnt/β-catenin signaling was inhibited, the level of HIV replication was enhanced by fourfold. To confirm the in vivo relevance of the β-catenin pathway in repressing HIV replication, we evaluated HIV-positive antiretroviral therapy-naive patients who were on lithium therapy. These patients demonstrated a reduction in viral load, which increased as the dose of lithium was reduced. Collectively, these data indicate that β-catenin signaling is an intrinsic molecular pathway restricting HIV replication in PBMCs.  相似文献   

18.
Antisense oligodeoxynucleotides (ODNs) have biological activity in treating various forms of cancer. The antisense effects of two types of 20mer ODNs, phosphorothioate-modified ODNs (S-ODNs) and S-ODNs with 12 2′-O-methyl groups (Me-S-ODNs), targeted to sites 109 and 277 of bcl-2 mRNA, were compared. Both types were at least as effective as G3139 (Genta, Inc.) in reducing the level of Bcl-2 protein in T24 cells following a 4 h transfection at a dose of 0.1 µM. Circular dichroism spectra showed that both types formed A-form duplexes with the complementary RNA, and the melting temperatures were in the order of Me-S-ODN·RNA > normal DNA·RNA > S-ODN·RNA. In comparison with the S-ODN, the Me-S-ODN had reduced toxic growth inhibitory effects, was less prone to bind the DNA-binding domain A of human replication protein A, and was as resistant to serum nucleases. Neither type of oligomer induced apoptosis, according to a PARP-cleavage assay. Hybrids formed with Me-S-ODN sequences were less sensitive to RNase H degradation than those formed with S-ODN sequences. Despite this latter disadvantage, the addition of 2′-O-methyl groups to a phosphorothioate-modified ODN is advantageous because of increased stability of binding and reduced non-specific effects.  相似文献   

19.
CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system.  相似文献   

20.
Defensins are antimicrobial peptides expressed by plants and animals. In mammals there are three subfamilies of defensins, distinguished by structural features: α, β and θ. Alpha and β-defensins are linear peptides with broad anti-microbial activity that are expressed by many mammals including humans. In contrast, θ-defensins are cyclic anti-microbial peptides made by several non-human primates but not humans. All three defensin types have anti-HIV-1 activity, but their mechanisms of action differ. We studied the anti-HIV-1 activity of one defensin from each group, HNP-1 (α), HBD-2 (β) and RTD-1 (θ). We examined how each defensin affected HIV-1 infection and demonstrated that the cyclic defensin RTD-1 inhibited HIV-1 entry, while acyclic HNP-1 and HBD-2 inhibited HIV-1 replication even when added 12 hours post-infection and blocked viral replication after HIV-1 cDNA formation. We further found that all three defensins downmodulated CXCR4. Moreover, RTD-1 inactivated X4 HIV-1, while HNP-1 and HBD-2 inactivated both X4 and R5 HIV-1. The data presented here show that acyclic and cyclic defensins block HIV-1 replication by shared and diverse mechanisms. Moreover, we found that HNP-1 and RTD-1 directly inhibited firefly luciferase enzymatic activity, which may affect the interpretation of previously published data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号