首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

5.
6.
In this paper, we report that SB202190 alone, a specific inhibitor of p38(MAPK), induces low density lipoprotein (LDL) receptor expression (6-8-fold) in a sterol-sensitive manner in HepG2 cells. Consistent with this finding, selective activation of the p38(MAPK) signaling pathway by expression of MKK6b(E), a constitutive activator of p38(MAPK), significantly reduced LDL receptor promoter activity. Expression of the p38(MAPK) alpha-isoform had a similar effect, whereas expression of the p38(MAPK) betaII-isoform had no significant effect on LDL receptor promoter activity. SB202190-dependent increase in LDL receptor expression was accompanied by induction of p42/44(MAPK), and inhibition of this pathway completely prevented SB202190-induced LDL receptor expression, suggesting that p38(MAPK) negatively regulates the p42/44(MAPK) cascade and the responses mediated by this kinase. Cross-talk between these kinases appears to be one-way because modulation of p42/44(MAPK) activity did not affect p38(MAPK) activation by a variety of stress inducers. Taken together, these findings reveal a hitherto unrecognized one-way communication that exists between p38(MAPK) and p42/44(MAPK) and provide the first evidence that through the p42/44(MAPK) signaling cascade, the p38(MAPK) alpha-isoform negatively regulates LDL receptor expression, thus representing a novel mechanism of fine tuning cellular levels of cholesterol in response to a diverse set of environmental cues.  相似文献   

7.
LAMTOR2 (p14), a part of the larger LAMTOR/Ragulator complex, plays a crucial role in EGF-dependent activation of p42/44 mitogen-activated protein kinases (MAPK, ERK1/2). In this study, we investigated the role of LAMTOR2 in nerve growth factor (NGF)-mediated neuronal differentiation. Stimulation of PC12 (rat adrenal pheochromocytoma) cells with NGF is known to activate the MAPK. Pharmacological inhibition of MEK1 as well as siRNA–mediated knockdown of both p42 and p44 MAPK resulted in inhibition of neurite outgrowth. Contrary to expectations, siRNA–mediated knockdown of LAMTOR2 effectively augmented neurite formation and neurite length of PC12 cells. Ectopic expression of a siRNA-resistant LAMTOR2 ortholog reversed this phenotype back to wildtype levels, ruling out nonspecific off-target effects of this LAMTOR2 siRNA approach. Mechanistically, LAMTOR2 siRNA treatment significantly enhanced NGF-dependent MAPK activity, and this effect again was reversed upon expression of the siRNA-resistant LAMTOR2 ortholog. Studies of intracellular trafficking of the NGF receptor TrkA revealed a rapid colocalization with early endosomes, which was modulated by LAMTOR2 siRNA. Inhibition of LAMTOR2 and concomitant destabilization of the remaining members of the LAMTOR complex apparently leads to a faster release of the TrkA/MAPK signaling module and nuclear increase of activated MAPK. These results suggest a modulatory role of the MEK1 adapter protein LAMTOR2 in NGF-mediated MAPK activation required for induction of neurite outgrowth in PC12 cells.  相似文献   

8.
We investigated whether artepillin C, a major component of Brazilian propolis, acts as a neurotrophic-like factor in rat PC12m3 cells, in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of PC12m3 cells were treated with artepillin C at a concentration of 20 μM, the frequency of neurite outgrowth induced by artepillin C was approximately 7-fold greater than that induced by NGF alone. Artepillin C induced-neurite outgrowth of PC12m3 cells was inhibited by the ERK inhibitor U0126 and by the p38 MAPK inhibitor SB203580. Although artepillin C-induced p38 MAPK activity was detected in PC12m3 cells, phosphorylation of ERK induced by artepillin C was not observed. On the other hand, artepillin C caused rapid activation of ERK and the time course of the activation was similar to that induced by NGF treatment in PC12 parental cells. However, NGF-induced neurite outgrowth was inhibited by artepillin C treatment. Interestingly, inhibition of ERK by U0126 completely prevented artepillin C-induced p38 MAPK phosphorylation of PC12m3 cells. These findings suggest that artepillin C-induced activation of p38 MAPK through the ERK signaling pathway is responsible for the neurite outgrowth of PC12m3 cells.  相似文献   

9.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients. However, the implication of thrombin in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study we investigated the effect of thrombin on cell proliferation and p42/p44 mitogen-activated protein kinase (MAPK) activation in human tracheal smooth muscle cells (TSMCs). Thrombin stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor GF109203X, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and PI 3-kinase inhibitors wortmannin and LY294002. In addition, thrombin-induced [3H]-thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. Furthermore, overexpression of dominant negative mutants, RasN17 and Raf-301, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca(2+), PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in cultured human TSMCs.  相似文献   

10.
Sphingosine 1-phosphate (S1P) has been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. S1P increases the expression of several proteins including COX-2 in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating COX-2 expression by S1P in VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced the expression of COX-2 mRNA and protein in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and PI3K (wortmannin), and transfection with dominant negative mutants of p42/p44 mitogen-activated protein kinases (ERK2) or Akt. These results suggested that both p42/p44 MAPK and PI3K/Akt pathways participated in COX-2 expression induced by S1P in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt, which was attenuated by U0126, LY294002, or wortmannin, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by a selective NF-kappaB inhibitor helenalin. Consistently, S1P-stimulated translocation of NF-kappaB into the nucleus was revealed by immnofluorescence staining. Moreover, S1P-stimulated activation of NF-kappaB promoter activity was blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and helenalin, but not by U0126, suggesting that involvement of PI3K/Akt in the activation of NF-kappaB. COX-2 promoter assay showed that S1P induced COX-2 promoter activity mediated through p42/p44 MAPK, PI3K/Akt, and NF-kappaB. These results suggested that in VSMCs, activation of p42/p44 MAPK, Akt and NF-kappaB pathways was essential for S1P-induced COX-2 gene expression. Understanding the mechanisms involved in S1P-induced COX-2 expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

11.
Xu X  Malave A 《Life sciences》2000,67(26):3221-3230
Recently mitogen-activated protein kinase (MAPK) has been reported to play an important role in phosphorylation cascades governing cell growth and protein expression in numerous cell types. In order to explore the signaling mechanism by which inducible nitric oxide synthase (iNOS) is regulated in C6 glioma cells, we investigated the role of MAPK in iNOS expression by using the specific MAPK inhibitors. First the induction of nitric oxide by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFalpha), interferon gamma (IFNgamma), alone or their combination, was studied in C6 glioma cells. Administration of LPS, TNFalpha, or IFNgamma alone had no detectable stimulatory effect on the production of nitric oxide (NO). However, combination of the three factors elicited a significant elevation of NO level in C6 cell culture medium. Subsequently pretreatment of C6 cells with a specific inhibitor of p38 MAPK, SB202190, resulted in a dose-dependent inhibition of NO production and iNOS expression, but PD98059, an inhibitor of p42/p44 MAPK activation, had no effect. These data suggest that p38 MAPK mediates iNOS expression in C6 glioma cells, but p42/p44 MAPK is not involved in this process.  相似文献   

12.
Leptin, the adipocyte-secreted hormone, is known to function as an immunomodulatory regulator. Thus, we have recently found that human leptin promotes stimulation and proliferation of human peripheral blood mononuclear cells. Besides, we have also demonstrated that leptin triggers PI3K and p42/44 MAPK signaling pathways. In the present work, we sought to study the possible effect of leptin on cell survival and apoptosis, as well as the mechanisms underlying these effects. We have cultured human PBMC in serum-free conditions to assess the effect of leptin on cell survival and apoptosis. We have assayed the early phases of apoptosis by flow cytometric detection of phosphatidylserine expression using fluorescein isothiocyanate (FITC)-labelled Annexin V, simultaneously with dye exclusion of propidium iodide (PI), to discriminate intact cells, apoptotic, and necrotic cells. We have found that leptin promotes dose-dependent cell survival of monocytes after 24-96 h of serum-free culture. This effect of leptin on monocyte survival was completely reversed by blocking p42/44 MAPK activation employing the MEK inhibitor PD98059, whereas it was not affected by PI3K inhibition using Wortmannin. Leptin promotes this survival effect by preventing the apoptosis of monocyte cells, via MAPK activation. Thus, p42/44 MAPK inhibition, using PD98059, but not PI3K inhibition, employing Wortmannin, blocked the protective effect of leptin preventing apoptosis of monocytes cultured in the absence of serum. These data suggest that leptin is a trophic factor for the survival of blood monocytes and this effect is mediated by the p42/44 MAPK pathway.  相似文献   

13.
Up-regulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Sphingosine-1-phosphate (S1P) has been shown to play a key role in inflammation via adhesion molecules induction, and then causes lung injury. However, the mechanisms underlying S1P-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. The effect of S1P on ICAM-1 expression was determined by Western blot and real-time PCR. The involvement of signaling pathways in these responses was investigated by using the selective pharmacological inhibitors and transfection with siRNAs. S1P markedly induced ICAM-1 expression and monocyte adhesion which were attenuated by pretreatment with the inhibitor of S1PR1 (W123), S1PR3 (CAY10444), c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), PI3K (LY294002), or AP-1 (Tanshinone IIA) and transfection with siRNA of S1PR1, S1PR3, c-Src, EGFR, PDGFR, p38, p42, JNK1, c-Jun, or c-Fos. We observed that S1P-stimulated p42/p44 MAPK and p38 MAPK activation was mediated via a c-Src/EGFR and PDGFR-dependent pathway. S1P caused the c-Src/EGFR/PDGFR complex formation. On the other hand, we demonstrated that S1P induced p42/p44 MAPK and p38 MAPK-dependent Akt activation. In addition, S1P-stimulated JNK1/2 phosphorylation was attenuated by SP600125 or PP1. Finally, S1P enhanced c-Fos mRNA levels and c-Jun phosphorylation. S1P-induced c-Jun activation was reduced by PP1, AG1478, AG1296, U0126, SP600125, SB202190, or LY294002. These results demonstrated that S1P-induced ICAM-1 expression and monocyte adhesion were mediated through S1PR1/3/c-Src/EGFR, PDGFR/p38 MAPK, p42/p44 MAPK/Akt-dependent AP-1 activation.  相似文献   

14.
15.
16.
Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinate complex biological processes during differentiation and tissue repair. Here we describe the role of CTGF in integrin-mediated adhesive signaling and the production of extracellular matrix components in human mesangial cells. The addition of CTGF to primary mesangial cells induced fibronectin production, cell migration, and cytoskeletal rearrangement. These functional responses were associated with recruitment of Src and phosphorylation of p42/44 MAPK and protein kinase B. The inhibition of CTGF-induced p42/44 MAPK or phosphatidylinositol 3-kinase (PI3K)/protein kinase B pathway activities abrogated the induction of fibronectin expression. In addition, anti-beta(3) integrin antibodies attenuated the activation of both the p42/44 MAPK and protein kinase B and the increase in fibronectin levels. CTGF also induced mesangial cell migration via a beta(3) integrin-dependent mechanism that was similarly sensitive to the inhibition of the p42/44 MAPK and PI3K pathways, and it promoted the adhesion of the mesangial cells to type I collagen via up-regulation of alpha(1) integrin. Transient actin cytoskeletal disassembly was observed following treatment with the ligand over the course of a 24-h period. CTGF induced the loss of focal adhesions from the mesangial cell as evidenced by the loss of punctate vinculin. However, these processes are p42/44 MAPK and PI3K pathway-independent. Our data support the hypothesis that CTGF mediates a number of its biological effects by the induction of signaling processes via beta(3) integrin. However, others such as actin cytoskeleton disassembly are modulated in a beta(3) integrin/MAPK/PI3K-independent manner, indicating that CTGF is a complex pleiotropic factor with the potential to amplify primary pathophysiological responses.  相似文献   

17.
Song EJ  Yoo YS 《BMB reports》2011,44(3):182-186
Exogenous stimuli such as nerve growth factor (NGF) exert their effects on neurite outgrowth via Trk neurotrophin receptors. TrkA receptors are known to be ubiquitinated via proteasome inhibition in the presence of NGF. However, the effect of proteasome inhibition on neurite outgrowth has not been studied extensively. To clarify these issues, we investigated signaling events in PC12 cells treated with NGF and the proteasome inhibitor MG132. We found that MG132 facilitated NGF-induced neurite outgrowth and potentiated the phosphorylation of the extracellular signal-regulated kinase/mitogen- activated protein kinase (ERK/MAPK) and phosphatidylinositol- 3-kinase (PI3K)/AKT pathways and TrkA receptors. MG132 stimulated internalization of surface TrkA receptor and stabilized intracellular TrkA receptor, and the Ub(K63) chain was found to be essential for stability. These results indicate that the ubiquitin-proteasome system potentiated neurite formation by regulating the stability of TrkA receptors.  相似文献   

18.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

19.
We previously reported that prolactin (PRL) induces chitotriosidase (CHIT‐1) mRNA expression in human macrophages. In this investigation we determined the signaling pathways involved in CHIT‐1 induction in response to PRL. The CHIT‐1 induction PRL‐mediated was reduced by wortmannin and LY‐294002, inhibitors of phosphatidylinositol 3‐kinase (PI3‐K) and by genistein an inhibitor of protein tyrosine kinase (PTK). Pre‐treatment of macrophages with SB203580, a specific inhibitor of the mitogen‐activated kinases (MAPK) p38, or with U0126, an inhibitor of MAPK p44/42, prevented both basal and exogenous PRL‐mediated CHIT‐1 expression. No significant effects on CHIT‐1 induction PRL‐mediated were observed with a protein kinase C inhibitor (PKC), rottlerin, or with an Src inhibitor, PP2, or with JAK2 inhibitor, AG490. In addition, PRL induced a phosphorylation of AKT that was prevented both by the two MAPK inhibitors SB203580 and U0126 and by the PI3‐K inhibitors wortmannin and LY‐294002. In conclusion, our results indicate that PRL up‐regulated CHIT‐1 expression via PTK, PI3‐K, MAPK, and signaling transduction components. J. Cell. Biochem. 107: 881–889, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号