首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Formalin-fixed, paraffin-embedded (FFPE) tissues represent the most abundant resource of archived human specimens in pathology. Such tissue specimens are emerging as a highly valuable resource for translational proteomic studies. In quantitative proteomic analysis, reductive di-methylation of primary amines using stable isotopic formaldehyde variants is increasingly used due to its robustness and cost-effectiveness.

Results

In the present study we show for the first time that isotopic amine dimethylation can be used in a straightforward manner for the quantitative proteomic analysis of FFPE specimens without interference from formalin employed in the FFPE process. Isotopic amine dimethylation of FFPE specimens showed equal labeling efficiency as for cryopreserved specimens. For both FFPE and cryopreserved specimens, differential labeling of identical samples yielded highly similar ratio distributions within the expected range for dimethyl labeling. In an initial application, we profiled proteome changes in clear cell renal cell carcinoma (ccRCC) FFPE tissue specimens compared to adjacent non–malignant renal tissue. Our findings highlight increased levels of glyocolytic enzymes, annexins as well as ribosomal and proteasomal proteins.

Conclusion

Our study establishes isotopic amine dimethylation as a versatile tool for quantitative proteomic analysis of FFPE specimens and underlines proteome alterations in ccRCC.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1768-x) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing.

Principal Findings

In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates.

Conclusions

These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form suitable for proteomic analysis.  相似文献   

3.

Background

Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE) samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies.

Methodology/Principal Findings

Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage). We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa) to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples.

Conclusions/Significance

The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which will respond to therapy.  相似文献   

4.

Background

The use of DNA from archival formalin and paraffin embedded (FFPE) tissue for genetic and epigenetic analyses may be problematic, since the DNA is often degraded and only limited amounts may be available. Thus, it is currently not known whether genome-wide methylation can be reliably assessed in DNA from archival FFPE tissue.

Methodology/Principal Findings

Ovarian tissues, which were obtained and formalin-fixed and paraffin-embedded in either 1999 or 2011, were sectioned and stained with hematoxylin-eosin (H&E).Epithelial cells were captured by laser micro dissection, and their DNA subjected to whole genomic bisulfite conversion, whole genomic polymerase chain reaction (PCR) amplification, and purification. Sequencing and software analyses were performed to identify the extent of genomic methylation. We observed that 31.7% of sequence reads from the DNA in the 1999 archival FFPE tissue, and 70.6% of the reads from the 2011 sample, could be matched with the genome. Methylation rates of CpG on the Watson and Crick strands were 32.2% and 45.5%, respectively, in the 1999 sample, and 65.1% and 42.7% in the 2011 sample.

Conclusions/Significance

We have developed an efficient method that allows DNA methylation to be assessed in archival FFPE tissue samples.  相似文献   

5.
6.

Background

Predicting the prognosis of prostate cancer disease through gene expression analysis is receiving increasing interest. In many cases, such analyses are based on formalin-fixed, paraffin embedded (FFPE) core needle biopsy material on which Gleason grading for diagnosis has been conducted. Since each patient typically has multiple biopsy samples, and since Gleason grading is an operator dependent procedure known to be difficult, the impact of the operator''s choice of biopsy was evaluated.

Methods

Multiple biopsy samples from 43 patients were evaluated using a previously reported gene signature of IGFBP3, F3 and VGLL3 with potential prognostic value in estimating overall survival at diagnosis of prostate cancer. A four multiplex one-step qRT-PCR test kit, designed and optimized for measuring the signature in FFPE core needle biopsy samples was used. Concordance of gene expression levels between primary and secondary Gleason tumor patterns, as well as benign tissue specimens, was analyzed.

Results

The gene expression levels of IGFBP3 and F3 in prostate cancer epithelial cell-containing tissue representing the primary and secondary Gleason patterns were high and consistent, while the low expressed VGLL3 showed more variation in its expression levels.

Conclusion

The assessment of IGFBP3 and F3 gene expression levels in prostate cancer tissue is independent of Gleason patterns, meaning that the impact of operator''s choice of biopsy is low.  相似文献   

7.

Background

Pancreatic cancer is among the most lethal malignancies worldwide. This study aimed to identify a novel prognostic biomarker, facilitating treatment selection, using mass spectrometry (MS)-based proteomic analysis with formalin-fixed paraffin-embedded (FFPE) tissue.

Results

The two groups with poor prognosis (n = 4) and with better prognosis (n = 4) had been carefully chosen among 96 resected cases of pancreatic cancer during 1998 to 2007 in Tohoku University Hospital. Although those 2 groups had adjusted background (UICC-Stage IIB, Grade2, R0, gemcitabine adjuvant), there was a significant difference in postoperative mean survival time (poor 21.0 months, better 58.1 months, P = 0.0067). Cancerous epithelial cells collected from FFPE tissue sections by laser micro-dissection (LMD) were processed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 1099 unique proteins were identified and 6 proteins showed different expressions in the 2 groups by semi-quantitative comparison. Among these 6 proteins, we focused on Nm23/Nucleoside Diphosphate Kinase A (NDPK-A) and immunohistochemically confirmed its expression in the cohort of 96 cases. Kaplan-Meier analysis showed high Nm23/NDPK-A expression to correlate with significantly worse overall survival (P = 0.0103). Moreover, in the multivariate Cox regression model, Nm23/NDPK-A over-expression remained an independent predictor of poor survival with a hazard ratio of 1.97 (95% CI 1.16-3.56, P = 0.0110).

Conclusions

We identified 6 candidate prognostic markers for postoperative pancreatic cancer using FFPE tissues and immunohistochemically demonstrated high Nm23/NDPK-A expression to be a useful prognostic marker for pancreatic cancer.  相似文献   

8.

Background

Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens.

Principal Findings

For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses.

Significance

We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded, for additional or subsequent studies.  相似文献   

9.
10.

Introduction

We have examined expression of microRNAs (miRNAs) in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers.

Materials and Methods

We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT) and paraffin-embedded specimens (FFPE). We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features.

Results

We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367) that strongly correlate to overall survival.

Conclusion

We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.  相似文献   

11.

Background and Methods

Formalin Fixed Paraffin Embedded (FFPE) samples represent a valuable resource for cancer research. However, the discovery and development of new cancer biomarkers often requires fresh frozen (FF) samples. Recently, the Whole Genome (WG) DASL (cDNA-mediated Annealing, Selection, extension and Ligation) assay was specifically developed to profile FFPE tissue. However, a thorough comparison of data generated from FFPE RNA and Fresh Frozen (FF) RNA using this platform is lacking. To this end we profiled, in duplicate, 20 FFPE tissues and 20 matched FF tissues and evaluated the concordance of the DASL results from FFPE and matched FF material.

Methodology and Principal Findings

We show that after proper normalization, all FFPE and FF pairs exhibit a high level of similarity (Pearson correlation >0.7), significantly larger than the similarity between non-paired samples. Interestingly, the probes showing the highest correlation had a higher percentage G/C content and were enriched for cell cycle genes. Predictions of gene expression signatures developed on frozen material (Intrinsic subtype, Genomic Grade Index, 70 gene signature) showed a high level of concordance between FFPE and FF matched pairs. Interestingly, predictions based on a 60 gene DASL list (best match with the 70 gene signature) showed very high concordance with the MammaPrint® results.

Conclusions and Significance

We demonstrate that data generated from FFPE material with the DASL assay, if properly processed, are comparable to data extracted from the FF counterpart. Specifically, gene expression profiles for a known set of prognostic genes for a specific disease are highly comparable between two conditions. This opens up the possibility of using both FFPE and FF material in gene expressions analyses, leading to a vast increase in the potential resources available for cancer research.  相似文献   

12.

Background

Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies.

Methods

A mass spectrometry-based Selected Reaction Monitoring (SRM) assay for the EGFR protein (EGFR-SRM) was developed utilizing the Liquid Tissue®-SRM technology platform. Tissue culture cells (n = 4) were analyzed by enzyme-linked immunosorbent assay (ELISA) to establish quantitative EGFR levels. Matching formalin fixed cultures were analyzed by the EGFR-SRM assay and benchmarked against immunoassay of the non-fixed cultured cells. Xenograft human tumor tissue (n = 10) of non-small cell lung cancer (NSCLC) origin and NSCLC patient tumor tissue samples (n = 23) were microdissected and the EGFR-SRM assay performed on Liquid Tissue lysates prepared from microdissected tissue. Quantitative curves and linear regression curves for correlation between immunoassay and SRM methodology were developed in Excel.

Results

The assay was developed for quantitation of a single EGFR tryptic peptide for use in FFPE patient tissue with absolute specificity to uniquely distinguish EGFR from all other proteins including the receptor tyrosine kinases, IGF-1R, cMet, Her2, Her3, and Her4. The assay was analytically validated against a collection of tissue culture cell lines where SRM analysis of the formalin fixed cells accurately reflects EGFR protein levels in matching non-formalin fixed cultures as established by ELISA sandwich immunoassay (R2 = 0.9991). The SRM assay was applied to a collection of FFPE NSCLC xenograft tumors where SRM data range from 305amol/μg to 12,860amol/μg and are consistent with EGFR protein levels in these tumors as previously-reported by western blot and SRM analysis of the matched frozen tissue. In addition, the SRM assay was applied to a collection of histologically-characterized FFPE NSCLC patient tumor tissue where EGFR levels were quantitated from not detected (ND) to 670amol/μg.

Conclusions

This report describes and evaluates the performance of a robust and reproducible SRM assay designed for measuring EGFR directly in FFPE patient tumor tissue with accuracy at extremely low (attomolar) levels. This assay can be used as part of a complementary or companion diagnostic strategy to support novel therapies currently under development and demonstrates the potential to identify candidates for EGFR-inhibitor therapy, predict treatment outcome, and reveal mechanisms of therapeutic resistance.  相似文献   

13.

Background

Lung cancer is the number one cause of cancer-related deaths in the United States and worldwide. The complex protein changes and/or signature of protein expression in lung cancer, particularly in non-small cell lung cancer (NSCLC) has not been well defined. Although several studies have investigated the protein profile in lung cancers, the knowledge is far from complete. Among early studies, mucin5B (MUC5B) has been suggested to play an important role in the tumor progression. MUC5B is the major gel-forming mucin in the airway. In this study, we investigated the overall protein profile and MUC5B expression in lung adenocarcinomas, the most common type of NSCLCs.

Methods

Lung adenocarcinoma tissue in formalin-fixed paraffin-embedded (FFPE) blocks was collected and microdissected. Peptides from 8 tumors and 8 tumor-matched normal lung tissue were extracted and labeled with 8-channel iTRAQ reagents. The labeled peptides were identified and quantified by LC-MS/MS using an LTQ Orbitrap Velos mass spectrometer. MUC5B expression identified by iTRAQ labeling was further validated using immunohistochemistry (IHC) on tumor tissue microarray (TMA).

Results

A total of 1288 peptides from 210 proteins were identified and quantified in tumor tissues. Twenty-two proteins showed a greater than 1.5-fold differences between tumor and tumor-matched normal lung tissues. Fifteen proteins, including MUC5B, showed significant changes in tumor tissues. The aberrant expression of MUC5B was further identified in 71.1% of lung adenocarcinomas in the TMA.

Discussions

A subset of tumor-associated proteins was differentially expressed in lung adenocarcinomas. The differential expression of MUC5B in lung adenocarcinomas suggests its role as a potential biomarker in the detection of adenocarcinomas.  相似文献   

14.

Background

Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data.

Methods

FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging.

Results

The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections.

Conclusion

We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis.  相似文献   

15.
16.

Objective

To investigate the reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) in assessing tumor response early in the course of neoadjuvant chemoradiotherapy in patients with operable esophageal cancer.

Methods

Eleven male patients (mean age 54.8 years) with newly diagnosed esophageal cancer underwent DW-MRI before and 10 days after start of chemoradiotherapy. Reproducibility of apparent diffusion coefficient (ADC) measurements by manual (freehand) and semi-automated volumetric methods was assessed.

Results

Interobserver reproducibility for the assessment of mean tumor ADC by the manual measurement method was good, with an ICC of 0.69 (95% CI, 0.36 to 0.85; P = 0.001). Interobserver reproducibility for the assessment of mean tumor ADC by the semi-automated volumetric measurement method was very good, with an ICC of 0.96 (95% CI, 0.91 to 0.98; P<0.001).

Conclusion

Semi-automated volumetric ADC measurements have higher reproducibility than manual ADC measurements in assessing tumor response to chemoradiotherapy in patients with esophageal adenocarcinoma.  相似文献   

17.

Background

Prostate cancer is the most frequently diagnosed cancer in men and the third leading cause of cancer related deaths among men living in developed countries. Biomarkers that predict disease outcome at the time of initial diagnosis would substantially aid disease management.

Results

Proteins extracted from formalin-fixed paraffin-embedded tissue were identified using nanoflow liquid chromatography-MALDI MS/MS or after separation by one- or two-dimensional electrophoresis. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000963. A list of potential biomarker candidates, based on proposed associations with prostate cancer, was derived from the 320 identified proteins. Candidate biomarkers were then examined by multiplexed Western blotting of archival specimens from men with premetastatic disease and subsequent disease outcome data. Annexin A2 provided the best prediction of risk of metastatic disease (log-rank Chi squared p = 0. 025). A tumor/control tissue >2-fold relative abundance increase predicted early biochemical failure, while <2-fold change predicted late or no biochemical failure.

Conclusions

This study confirms the potential for use of archival FFPE specimens in the search for prognostic biomarkers for prostate cancer and suggests that annexin A2 abundance in diagnostic biopsies is predictive for metastatic potential. Protein profiling each cancer may lead to an overall reduction in mortality from metastatic prostate cancer as well as reduced treatment associated morbidity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12014-015-9096-3) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

The identification of proteins by mass spectrometry is a standard method in biopharmaceutical quality control and biochemical research. Prior to identification by mass spectrometry, proteins are usually pre-separated by electrophoresis. However, current protein staining and de-staining protocols are tedious and time consuming, and therefore prolong the sample preparation time for mass spectrometry.

Methodology and Principal Findings

We developed a 1-minute covalent pre-gel staining protocol for proteins, which does not require de-staining before the mass spectrometry analysis. We investigated the electrophoretic properties of derivatized proteins and peptides and studied their behavior in mass spectrometry. Further, we elucidated the preferred reaction of proteins with Uniblue A and demonstrate the integration of the peptide derivatization into typical informatics tools.

Conclusions and Significance

The Uniblue A staining method drastically speeds up the sample preparation for the mass spectrometry based identification of proteins. The application of this chemo-proteomic strategy will be advantageous for routine quality control of proteins and for time-critical tasks in protein analysis.  相似文献   

19.

Background

Somatic mutations of the epidermal growth factor receptor (EGFR) are reportedly associated with various responses in non-small cell lung cancer (NSCLC) patients receiving the anti-EGFR agents. Detection of the mutation therefore plays an important role in therapeutic decision making. The aim of this study was to detect EGFR mutations in formalin fixed paraffin embedded (FFPE) samples using both Scorpion ARMS and high resolution melt (HRM) assay, and to compare the sensitivity of these methods.

Results

All of the mutations were found in adenocarcinoma, except one that was in squamous cell carcinoma. The mutation rate was 45.7% (221/484). Complex mutations were also observed, wherein 8 tumours carried 2 mutations and 1 tumour carried 3 mutations.

Conclusions

Both methods detected EGFR mutations in FFPE samples. HRM assays gave more EGFR positive results compared to Scorpion ARMS.  相似文献   

20.

Background

HPV typing using formalin fixed paraffin embedded (FFPE) cervical tissue is used to evaluate HPV vaccine impact, but DNA yield and quality in FFPE specimens can negatively affect test results. This study aimed to evaluate 2 commercial assays for HPV detection and typing using FFPE cervical specimens.

Methods

Four large North Carolina pathology laboratories provided FFPE specimens from 299 women ages18 and older diagnosed with cervical disease from 2001 to 2006. For each woman, one diagnostic block was selected and unstained serial sections were prepared for DNA typing. Extracts from samples with residual lesion were used to detect and type HPV using parallel and serial testing algorithms with the Linear Array and LiPA HPV genotyping assays.

Findings

LA and LiPA concordance was 0.61 for detecting any high-risk (HR) and 0.20 for detecting any low-risk (LR) types, with significant differences in marginal proportions for HPV16, 51, 52, and any HR types. Discordant results were most often LiPA-positive, LA-negative. The parallel algorithm yielded the highest prevalence of any HPV type (95.7%). HR type prevalence was similar using parallel (93.1%) and serial (92.1%) approaches. HPV16, 33, and 52 prevalence was slightly lower using the serial algorithm, but the median number of HR types per woman (1) did not differ by algorithm. Using the serial algorithm, HPV DNA was detected in >85% of invasive and >95% of pre-invasive lesions. The most common type was HPV16, followed by 52, 18, 31, 33, and 35; HPV16/18 was detected in 56.5% of specimens. Multiple HPV types were more common in lower grade lesions.

Conclusions

We developed an efficient algorithm for testing and reporting results of two commercial assays for HPV detection and typing in FFPE specimens, and describe HPV type distribution in pre-invasive and invasive cervical lesions in a state-based sample prior to HPV vaccine introduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号