首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The genus Asparagopsis was studied using 25 Falkenbergia tetrasporophyte strains collected worldwide. Plastid (cp) DNA RFLP revealed three groups of isolates, which differed in their small subunit rRNA gene sequences, temperature responses, and tetrasporophytic morphology (cell sizes). Strains from Australia, Chile, San Diego, and Atlantic and Mediterranean Europe were identifiable as A. armata Harvey, the gametophyte of which has distinctive barbed spines. This species is believed to be endemic to cold‐temperate waters of Australia and New Zealand and was introduced into Europe in the 1920s. All isolates showed identical cpDNA RFLPs, consistent with a recent introduction from Australia. Asparagopsis taxiformis (Delile) Trevisan, the type and only other recognized species, which lacks spines, is cosmopolitan in warm‐temperate to tropical waters. Two clades differed morphologically and ecophysiologically and in the future could be recognized as sibling species or subspecies. A Pacific/Italian clade had 4–8° C lower survival minima and included a genetically distinct apomictic isolate from Western Australia that corresponded to the form of A. taxiformis originally described as A. sanfordiana Harvey. The second clade, from the Caribbean and the Canaries, is stenothermal (subtropical to tropical) with some ecotypic variation. The genus Asparagopsis consists of two or possibly three species, but a definitive taxonomic treatment of the two A. taxiformis clades requires study of field‐collected gametophytes.  相似文献   

2.
The red seaweed Asparagopsis taxiformis embodies five cryptic mitochondrial lineages (lineage 1–5) introduced worldwide as a consequence of human mediated transport and climate change. We compared globally collected mitochondrial cox2‐3 intergenic spacer sequences with sequences produced from multiple Australian locations and South Korea to identify Asparagopsis lineages and to reveal cryptic introductions. We report A. taxiformis lineage 4 from Cocos (Keeling) Islands, Australia, and the highly invasive Indo‐Pacific Mediterranean lineage 2 from South Korea and Lord Howe Island, Australia. Phylogeographic analysis showed a clear haplotype and geographic separation between western Australian and Great Barrier Reef (GBR) isolates belonging to the recently described lineage 5. The same lineage, however, was characterized by a substantial genetic and geographic break between the majority of Australian specimens and Asparagopsis collections from South Solitary Island, Southern GBR, Lord Howe Island, Kermadec Islands, Norfolk Island, New Caledonia and French Polynesia. The disjunct geographic distribution and sequence divergence between these two groups supports the recognition of a sixth cryptic A. taxiformis mitochondrial lineage. As climatic changes accelerate the relocation of biota and offer novel niches for colonization, periodic surveys for early detection of cryptic invasive seaweeds will be critical in determining whether eradication or effective containment of the aliens are feasible.  相似文献   

3.
The mitochondrial genetic diversity, distribution and invasive potential of multiple cryptic operational taxonomic units (OTUs) of the red invasive seaweed Asparagopsis were assessed by studying introduced Mediterranean and Hawaiian populations. Invasive behavior of each Asparagopsis OTU was inferred from phylogeographic reconstructions, past historical demographic dynamics, recent range expansion assessments and future distributional predictions obtained from demographic models. Genealogical networks resolved Asparagopsis gametophytes and tetrasporophytes into four A. taxiformis and one A. armata cryptic OTUs. Falkenbergia isolates of A. taxiformis L3 were recovered for the first time in the western Mediterranean Sea and represent a new introduction for this area. Neutrality statistics supported past range expansion for A. taxiformis L1 and L2 in Hawaii. On the other hand, extreme geographic expansion and an increase in effective population size were found only for A. taxiformis L2 in the western Mediterranean Sea. Distribution models predicted shifts of the climatically suitable areas and population expansion for A. armata L1 and A. taxiformis L1 and L2. Our integrated study confirms a high invasive risk for A. taxiformis L1 and L2 in temperate and tropical areas. Despite the differences in predictions among modelling approaches, a number of regions were identified as zones with high invasion risk for A. taxiformis L2. Since range shifts are likely climate‐driven phenomena, future invasive behavior cannot be excluded for the rest of the lineages.  相似文献   

4.
A distinctive early Miocene-divergent lineage of Old world racer snakes is described as a new genus and species based on three specimens collected from the western Indian state of Gujarat. Wallaceophis gen. et. gujaratenesis sp. nov. is a members of a clade of old world racers. The monotypic genus represents a distinct lineage among old world racers is recovered as a sister taxa to Lytorhynchus based on ~3047bp of combined nuclear (cmos) and mitochondrial molecular data (cytb, ND4, 12s, 16s). The snake is distinct morphologically in having a unique dorsal scale reduction formula not reported from any known colubrid snake genus. Uncorrected pairwise sequence divergence for nuclear gene cmos between Wallaceophis gen. et. gujaratenesis sp. nov. other members of the clade containing old world racers and whip snake is 21–36%.  相似文献   

5.
A phylogenetic analysis of the New World genus Cuphea was conducted employing sequences from the nuclear rDNA internal transcribed spacer (ITS) and chloroplast trnL-trnF spacer and rpl16 intron. The analysis expands the number of Cuphea species from 53 in an earlier ITS study to 70 and adds two chloroplast data sets in order to generate a more complete and robust phylogeny and to test a previous result that suggested the presence of a large North American clade. Results reaffirm the monophyly of Cuphea with Pleurophora as the sister genus and recover a basal divergence event that mirrors the two subgenera of the current classification. Phylogenies of the two chloroplast regions are largely unresolved beyond the initial dichotomy and some resolution at the terminal and subterminal nodes. Based on the ITS phylogeny, five major clades are recognized. Subgenus Cuphea (Clade 1), defined morphologically by the synapomorphic loss of bracteoles, is sister to the much larger subg. Bracteolatae (Clades 2–5). Clades 2–4, comprising the South American and Caribbean species, grade successively to Clade 5, an exclusively North American lineage of 29 species. Among the 12 sections included in the study, only section Trispermum, a subclade of Clade 4, is monophyletic. Section Pseudocircaea is nested within Clade 3, which is largely equivalent to section Euandra. The North American endemic clade includes four sections, of which none are recovered as monophyletic in this study.  相似文献   

6.
The pantropical genus Pterocarpus (Leguminosae: Dalbergieae) with papilionoid flowers, and allied genera in the Pterocarpus clade were sampled for the five molecular markers ITS2, trnL-F, ndhF-rpL32, matK, and rbcL, as part of our ongoing systematic studies in the clade. For wider analyses of the Pterocarpus clade the remaining 14 members of this clade were also sampled for matK. Phylogenetic analyses were performed under the maximum likelihood criterion (ML) and Bayesian criteria. In the five-marker analysis of the core Pterocarpus clade (including 106 accessions) two robustly supported clades were resolved. The first clade includes Centrolobium, Etaballia, Inocarpus, Maraniona, Paramachaerium, Pterocarpus, Ramorinoa, and Tipuana. The second includes all species of Pterocarpus (except P. acapulcensis), Etaballia with radially symmetric flowers, and Paramachaerium. Paramachaerium is placed as sister to the several Pterocarpus species from South America, while Etaballia is resolved within the clade containing the African and Asian species of Pterocarpus. The wider sampled matK data set includes 199 accessions. Discolobium and Riedeliella are recovered as sister to the remaining Pterocarpus clade. Platymiscium is strongly supported as sister to the rest of the members of the clade, and Pterocarpus acapulcensis is also here resolved in a separate lineage from the remaining Pterocarpus accessions. We used the phylogenies to investigate patterns of floral evolvability in the Pterocarpus clade, which include four genera with actinomorphic flowers (Acosmium s.s., Etaballia, Inocarpus and Riedelliela). Our results reinforce the hypothesis that flower evolvability is high in early-branching legume lineages, and that actinomorphy has evolved independently four times in the Pterocarpus clade. In light of our results, the taxonomic status of the monospecific genus Etaballia dubia Benth. was revisited, and the species is synonymized as belonging to Pterocarpus, under the name Pterocarpus dubius Spreng., published in 1827, but hiding in synonymy for nearly two centuries.  相似文献   

7.
The Aegagropila clade represents a unique group of cladophoralean green algae occurring mainly in brackish and freshwater environments. The clade is sister to the species‐rich and primarily marine Cladophora and Siphonocladus lineages. Phylogenetic analyses of partial LSU and SSU nrDNA sequences reveal four main lineages within the Aegagropila clade, and allow a taxonomic reassessment. One lineage consists of two marine ‘Cladophora’ species, for which the new genus Pseudocladophora and the new family Pseudocladophoraceae are proposed. For the other lineages, the family name Pithophoraceae is reinstated. Within the Pithophoraceae, the earliest diverging lineage includes Wittrockiella and Cladophorella calcicola, occurring mainly in brackish and subaerial habitats. The two other lineages are restricted to freshwater. One of them shows a strong tendency for epizoism, and consists of Basicladia species and Arnoldiella conchophila. The other lineage includes Aegagropila, Pithophora and a small number of tropical ‘Cladophora’ species. The latter are transferred to the new genus Aegagropilopsis. Previously, polypyramidal pyrenoids had been suggested to be apomorphous for this clade, but we report the finding of both polypyramidal and bilenticular pyrenoids in members of the Pithophoraceae, and thus show that this character has no diagnostic value.  相似文献   

8.
Phylogenetic relationships among 41 species of salmonid fish and some aspects of their diversification-time history were studied using the GenBank and original mtDNA data. The position of the root of the Salmonidae phylogenetic tree was uncertain. Among the possible variants, the most reasonable seems to be that in which thymallins are grouped into the same clade as coregonins and the lineage of salmonins occupied a basal position relative to this clade. The genera of Salmoninae formed two distinct clades, i.e., (Brachymystax, Hucho) and (Salmo, Parahucho, (Salvelinus, (Parasalmo, Oncorhynchus)). Furthermore, the genera Parasalmo and Oncorhynchus were reciprocally monophyletic. The congruence of Salmonidae phylogenetic trees obtained using different types of phylogenetic markers is discussed. According to Bayesian dating, ancestral lineages of salmonids and their sister esocoids diverged about 106 million years ago. Sometime after, probably 100–70 million years ago, the salmonid-specific whole genome duplication took place. The divergence of salmonid lineages on the genus level occurred much later, within the time interval of 42–20 million years ago. The main wave of the diversification of salmonids at the species level occurred during the last 12 million years. The possible effect of genome duplication on the Salmonidae diversification pattern is discussed.  相似文献   

9.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

10.
11.
12.
The late Campanian-early Maastrichtian site of Lo Hueco (Cuenca, Spain) has provided a set of well-preserved crocodyliform skull and lower jaw remains, which are described here and assigned to a new basal eusuchian taxon, Lohuecosuchus megadontos gen. et sp. nov. The reevaluation of a complete skull from the synchronous site of Fox-Amphoux (Department of Var, France) allows us to define a second species of this new genus. Phylogenetic analysis places Lohuecosuchus in a clade exclusively composed by European Late Cretaceous taxa. This new clade, defined here as Allodaposuchidae, is recognized as the sister group of Hylaeochampsidae, also comprised of European Cretaceous forms. Allodaposuchidae and Hylaeochampsidae are grouped in a clade identified as the sister group of Crocodylia, the only crocodyliform lineage that reaches our days. Allodaposuchidae shows a vicariant distribution pattern in the European Late Cretaceous archipelago, with several Ibero-Armorican forms more closely related to each other than with to Romanian Allodaposuchus precedens.  相似文献   

13.
Phylogenetic studies indicate that the basidiolichen genus Dictyonema s.lat., often thought to represent only a single genus with few species, includes several well-supported genus-level clades, all of which form associations with a unique lineage of obligately lichenized cyanobacteria (Rhizonema). In an attempt to elucidate the evolution and genus- and species-level diversification in Dictyonema s.lat., we generated 68 new sequences of the nuclear large subunit rDNA (nuLSU), the internal transcribed spacer (ITS), and the RNA polymerase II subunit (RPB2), for 29 species-level lineages representing all major clades of Dictyonema s.lat. and most of the species currently known. The multilocus phylogeny obtained via maximum likelihood and Bayesian approaches indicates the presence of five genus-level groups: a basal clade, Cyphellostereum, that is sister to the rest of the species, a paraphyletic grade representing Dictyonema s.str., and three clades representing the genera Acantholichen, Cora, and Corella. To determine the evolutionary transformations of the lichenized thallus in the group, ancestral character state reconstruction was done using six characters (lichenisation, thallus type, cortex type, hyphal sheath and haustorial type, photobiont morphology, and basidiocarp type). Our analysis indicates a progressive development of the lichenized thallus from loosely organized filamentous crusts with separate, cyphelloid basidiocarps in Cyphellostereum, to filamentous crusts with derived hyphal sheath and cyphelloid–stereoid basidiocarps partially incorporated into the lichen thallus in Dictyonema, to squamulose–foliose thalli with corticioid basidiocarps entirely supported by the lichen thallus in Cora. These results indicate a remarkable evolutionary integration of lichenized and reproductive tissues in Dictyonema s.lat., supporting the hypothesis that, at least in this case, lichenized thalli may have evolved from reproductive structures in their nonlichenized ancestors.  相似文献   

14.
Interspecific hybridization events have been reported in the genus Spartina Schreb. (Poaceae), involving the east American species Spartina alterniflora, and including either introgression (e.g., with the western American Spartina foliosa) or allopolyploid speciation (e.g., with the Euro-African Spartina maritima). Molecular phylogenetic analysis of the genus has been undertaken in order to understand phylogenetic relationships and genetic divergence among these hybridizing species. Twelve Spartina species have been sequenced for two nuclear DNA regions (ITS of ribosomal DNA, and part of the Waxy gene) and one chloroplast DNA spacer (trnT-trnL). Separate and conditional combined phylogenetic analyses using Cynodon dactylon as the outgroup have been conducted. Spartina is composed of two lineages. The first clade includes all hexaploid species: the Euro-African S. maritima (2n = 60), the East-American S. alterniflora (2n = 62) and the West-American S. foliosa (2n = 60). Spartina alterniflora appears as a closely related sister species to S. foliosa. Although belonging to the same lineage, Spartina maritima appears consistently more genetically differentiated from S. alterniflora than S. foliosa. The tetraploid species S. argentinensis (2n = 40) is placed at the base of this first clade according to the Waxy data, but its position is not well resolved by the other sequences. The second well-supported main lineage within genus Spartina includes the other tetraploid American species. Significant incongruence has been encountered between the waxy based tree and both the ITS and trnT-trnL trees concerning the position of S. densiflora, suggesting a possible reticulate evolution for this species. The results agree with hybridization patterns occurring in Spartina: introgression involving closely related species (S. alterniflora and S. foliosa) on one hand, and alloploid speciation involving more differentiated species (S. alterniflora and S. maritima) on the other hand.  相似文献   

15.
A new notosuchian crocodyliform from the Late Cretaceous Bauru Group found in the southeastern State of São Paulo (Brazil) is described here. The new taxon, Caipirasuchus stenognathus, is referred as a new species of the recently erected genus Caipirasuchus within the clade Sphagesauridae based on a phylogenetic analysis of basal mesoeucrocodylians. Caipirasuchus stenognathus is represented by an almost complete skull and lower jaw that has autapomorphic characters that distinguish it from other species of Sphagesauridae. These autapomorphies include: maxilla forming part of the orbital margin (absence of lacrimal-jugal contact), nasal with smooth depressions on the posterior region close to the contact with the maxilla and lacrimal, postorbital with posterior palpebral facet that extends posteriorly underneath the ear-flap groove, and a distinct anterior process of the medial flange of the retroarticular process. Additionally, the new taxon lacks autapomorphic features described in other sphagesaurids. The phylogenetic analysis results in a monophyletic genus Caipirasuchus, that is the sister group of a clade fomed by Sphagesaurus huenei, Caryonosuchus pricei, and Armadillosuchus arrudai. Sphagesaurids also include a basal clade formed by Adamantinasuchus navae and Yacarerani boliviensis. Other notosuchian taxa, such as Mariliasuchus amarali, Labidiosuchus amicum, Notosuchus terrestris, and Morrinhosuchus luziae are successive sister taxa of Sphagesauridae, forming a clade of advanced notosuchians that are restricted to the Late Cretaceous of South America. These results contrast with most previous phylogenetic hypotheses of the group that depicted some members of Sphagesauridae as more closely related to baurusuchids, or found Asian (e.g., Chimaerasuchus) or African (Malawisuchus, Pakasuchus) forms nested within advanced notosuchians that are, according to our analysis, endemic of the Late Cretaceous of South America.  相似文献   

16.
The family Characidae is a group of freshwater bony fishes that exhibits high species-level diversity and whose members inhabit parts of Texas, Mexico, and Central and South America. Thus far, morphological data have been of limited use in discerning relationships among subfamilies and incertae sedis genera of the family Characidae. In this study, DNA sequence data from GenBank were combined with new sequences for analyses under Bayesian and parsimony schemes. Sequences fell into four gene partitions, with three genes in the mitochondrial subset (12S, 16S, COI genes) and one gene in the nuclear subset (RAG2 gene). Inferred Bayesian and parsimony-based phylogenies reject the monophyly of certain groups (e.g., Astyanax, Hyphessobrycon, and Bryconamericus), do not reject the monophyly of others (e.g., Cheirodontinae and “clade A” of previous authors), and present new sister-group hypotheses (e.g., Brittanichthys sister to Paracheirodon). Sister to clade A is a lineage referred to herein as “clade B” which includes Exodon and exemplars from Cheirodontinae (the most basal lineage within clade B), Aphyocharacinae, Tetragonopterinae, and Characinae (excluding Gnathocharax). “Clade C” is sister to A + B and contains representatives of large incertae sedis genera (e.g., Hyphessobrycon, Hemigrammus), as well as members of Stethaprioninae. Unless certain other subfamilial names are to be disregarded, the use of Tetragonopterinae should continue to be restricted to species of Tetragonopterus because other genera previously referred to this subfamily grouped in clades A or C, quite distant from Tetragonopterus.  相似文献   

17.
The Lophocoleaceae-Plagiochilaceae-Brevianthaceae clade is a largely terrestrial, subcosmopolitan lineage of jungermannialean leafy liverworts that may include significantly more than 1000 species. Here we present the most comprehensively sampled phylogeny available to date based on the nuclear ribosomal internal transcribed spacer region and the chloroplast markers rbcL and rps4 of 372 accessions. Brevianthaceae (consisting of Brevianthus and Tetracymbaliella) form a sister relationship with Lophocoleaceae; this lineage is in turn sister to Plagiochilaceae. Plagiochila is resolved monophyletic subsequent to exclusion of Plagiochila radiculosa; this species is placed in a new genus Cryptoplagiochila. Chiastocaulon and a polyphyletic Acrochila nest in Plagiochilion; these three genera are united under Chiastocaulon to include the Plagiochilaceae species with dominating or exclusively ventral branching. The generic classification of the Lophocoleaceae is still unresolved. We discuss alternative approaches to obtain strictly monophyletic genera by visualizing their consistence with the obtained consensus topology. The presented phylogeny will serve as a basis for follow-up studies including several thousand accessions. These studies will enable revision of current hypotheses on species diversity and distribution of Lophocoleaceae-Plagiochilaceae-Brevianthaceae and allow for a reconstruction of their evolution in time and space.  相似文献   

18.
Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named ‘maquis minier’, unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of ‘maquis minier’, in order to better understand the origin and past dynamics of New Caledonian biota.  相似文献   

19.
We address the generic limits of Gnidia (Thymelaeaceae) through a phylogenetic analysis of nuclear ribosomal DNA internal transcribed spacer (ITS) and plastid rbcL, trnL intron and trnL‐F intergenic spacer regions. Maximum parsimony and Bayesian inference were used to produce trees and assess internal support. The most significant conclusion drawn from the molecular analysis is that Gnidia is polyphyletic as currently circumscribed, comprising at least four distinct lineages that are each related to other genera within Thymelaeoideae. Gnidia pinifolia and G. racemosa are members of a clade within which Struthiola is embedded; a second group of species allies with Drapetes as sister to Passerina; and a third lineage corresponds to the previously recognized genus Lasiosiphon. The remaining species of Gnidia included in this study are allied with the Australian genus Pimelea. The taxonomic implications of these findings are discussed in relation to the principle of monophyly. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 402–417.  相似文献   

20.
There is general agreement that the hominoid primates form a monophyletic group, that the extant great apes and humans form a second clade within that group with the gibbons as the sister group, and that the African apes and humans form a third clade. Although it has recently been proposed that humans and orang utans are sister taxa and also that the great apes form a clade to the exclusion of humans, our analysis, particularly of the molecular evidence, supports the existence of an African ape and human clade. The major problem in hominoid phylogeny at present is the relationships of the species within this clade: morphological data generally support the existence of an African ape clade which is the sister group to humans; some molecular data also support this conclusion, but most molecular evidence indicates the existence of a chimpanzee/human clade. We have cladistically re-analysed the DNA and protein sequence data for which apomorphic character states can be assessed. It is clear that there is a high degree of homoplasy whichever branching pattern is produced, with some characters supporting the existence of a chimpanzee/human clade and others supporting an African ape clade. When the cladistic analyses of morphological and molecular data are combined we believe that the most parsimonious interpretation of the data is that the African apes form a clade which is the sister taxon of the human (i.e., Australopithecus, Homo and Paranthropus) clade.This paper is not intended as a survey of all hominoid fossils but as a study of branching points in hominoid evolution and fossils are included which are relevant to this branching pattern. The analysis of fossil taxa in this study leads us to conclude that Proconsul is the sister taxon to the later Hominoidea. A number of middle Miocene forms such as Dryopithecus, Kenyapithecus, Heliopithecus and Afropithecus are shown to share derived characters with great apes and humans and provide evidence for the divergence of that clade from the gibbon lineage prior to 18 Ma. The position that Sivapithecus represents the sister group of the orang utan clade is supported here and shows that the orang utan lineage had diverged from the African ape and human lineage prior to 11·5 Ma. There is unfortunately no definitive fossil cvidence on branching sequences within the African ape and human clade, although a new specimen from Samburu, Kenya may be related to the gorilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号