首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA).

Methodology/Principal Findings

The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH) activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component) of 34 µM.

Conclusions/Significance

The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.  相似文献   

2.
  1. The mechanism of anandamide uptake and disposal has been an issue of considerable debate in the cannabinoid field. Several compounds have been reported to inhibit anandamide uptake or fatty acid amide hydrolase (FAAH; the primary catabolic enzyme of anandamide) activity with varying degrees of potency and selectivity. We recently reported the first evidence of a binding site involved in the uptake of endocannabinoids that is independent from FAAH. There are no direct comparisons of purported selective inhibitory compounds in common assay conditions measuring anandamide uptake, FAAH activity and binding activity.2. A subset of compounds reported in the literature were tested in our laboratory under common assay conditions to measure their ability to (a) inhibit [14C]-anandamide uptake in cells containing (RBL-2H3) or cells lacking (HeLa) FAAH, (b) inhibit purified FAAH hydrolytic activity, and (c) inhibit binding to a putative binding site involved in endocannabinoid transport in both RBL and HeLa cell membranes.3. Under these conditions, nearly all compounds tested inhibited (a) uptake of [14C]-anandamide, (b) enzyme activity in purified FAAH preparations, and (c) radioligand binding of [3H]-LY2183240 in RBL and HeLa plasma membrane preparations. General rank order potency was preserved within the three assays. However, concentration response curves were right-shifted for functional [14C]-anandamide uptake in HeLa (FAAH−/−) cells.4. A more direct comparison of multiple inhibitors could be made in these three assay systems performed in the same laboratory, revealing more information about the selectivity of these compounds and the relationship between the putative endocannabinoid transport protein and FAAH. At least two separate proteins appear to be involved in uptake and degradation of anandamide. The most potent inhibitory compounds were right-shifted when transport was measured in HeLa (FAAH−/−) cells suggesting a requirement for a direct interaction with the FAAH protein to maintain high affinity binding of anandamide or inhibitors to the putative anandamide transport protein.  相似文献   

3.

Background

Recent data have indicated that there may be a dysregulation of endocannabinoid metabolism in cancer. Here we have investigated the expression of the endocannabinoid metabolising enzyme fatty acid amide hydrolase (FAAH) in a well characterised tissue microarray from patients diagnosed with prostate cancer at transurethral resection for voiding problems.

Methodology/Principal Findings

FAAH immunoreactivity (FAAH-IR) was assessed in formalin-fixed paraffin-embedded non-malignant and tumour cores from 412 patients with prostate cancer. CB1 receptor immunoreactivity (CB1IR) scores were available for this dataset. FAAH-IR was seen in epithelial cells and blood vessel walls but not in the stroma. Tumour epithelial FAAH-IR was positively correlated with the disease severity at diagnosis (Gleason score, tumour stage, % of the specimen that contained tumour) for cases with mid-range CB1IR scores, but not for those with high CB1IR scores. For the 281 cases who only received palliative therapy at the end stages of the disease, a high tumour epithelial FAAH-IR was associated with a poor disease-specific survival. Multivariate Cox proportional-hazards regression analyses indicated that FAAH-IR gave additional prognostic information to that provided by CB1IR when a midrange, but not a high CB1IR cutoff value was used. Interleukin-4 (IL-4) receptor IR was found on tumour epithelial cells and incubation of prostate cancer PC-3 and R3327 AT1 cells with IL-4 increased their FAAH activity.

Conclusions/Significance

Tumour epithelial FAAH-IR is associated with prostate cancer severity and outcome at mid-range, but not high, CB1IR scores. The correlation with CB1IR in the tumour tissue may be related to a common local dysregulation by a component of the tumour microenvironment.  相似文献   

4.

Background

In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen.

Methodology/Principal Findings

COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4′-hydroxyflurbiprofen and possibly also 3′-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds.

Conclusions/Significance

It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.  相似文献   

5.
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors.Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.  相似文献   

6.
The uptake of arachidonoyl ethanolamide (anandamide, AEA) in rat basophilic leukemia cells (RBL-2H3) has been proposed to occur via a saturable transporter that is blocked by specific inhibitors. Measuring uptake at 25 s, when fatty acid amide hydrolase (FAAH) does not appreciably affect uptake, AEA accumulated via a nonsaturable mechanism at 37 degrees C. Interestingly, saturation was observed when uptake was plotted using unbound AEA at 37 degrees C. Such apparent saturation can be explained by rate-limited delivery of AEA through an unstirred water layer surrounding the cells (1). In support of this, we observed kinetics consistent with rate-limited diffusion at 0 degrees C. Novel transport inhibitors have been synthesized that are either weak FAAH inhibitors or do not inhibit FAAH in vitro (e.g. UCM707, OMDM2, and AM1172). In the current study, none of these purported AEA transporter inhibitors affected uptake at 25 s. Longer incubation times illuminate downstream events that drive AEA uptake. Unlike the situation at 25 s, the efficacy of these inhibitors was unmasked at 5 min with appreciable inhibition of AEA accumulation correlating with partial inhibition of AEA hydrolysis. The uptake and hydrolysis profiles observed with UCM707, VDM11, OMDM2, and AM1172 mirrored two selective and potent FAAH inhibitors CAY10400 and URB597 (at low concentrations), indicating that weak inhibition of FAAH can have a pronounced effect upon AEA uptake. At 5 min, the putative transport inhibitors did not reduce AEA uptake in FAAH chemical knock-out cells. This strongly suggests that the target of UCM707, VDM11, OMDM2, and AM1172 is not a transporter at the plasma membrane but rather FAAH, or an uncharacterized intracellular component that delivers AEA to FAAH. This system is therefore unique among neuro/immune modulators because AEA, an uncharged hydrophobic molecule, diffuses into cells and partial inhibition of FAAH has a pronounced effect upon its uptake.  相似文献   

7.

Background

Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.

Methodology/Principal Findings

COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM).

Conclusions/Significance

Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.  相似文献   

8.

Aims

Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients.

Methods

AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D) and constipation-predominant (IBS-C) patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls.

Results

Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C.

Conclusion

IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.  相似文献   

9.

Background and Purpose

Fatty acid binding protein 4 (FABP4) has been shown to play an important role in macrophage cholesterol trafficking and associated inflammation. To further elucidate the role of FABP4 in atherogenesis in humans, we examined the regulation of FABP4 in carotid atherosclerosis and ischemic stroke.

Methods

We examined plasma FABP4 levels in asymptomatic (n = 28) and symptomatic (n = 31) patients with carotid atherosclerosis, as well as in 202 subjects with acute ischemic stroke. In a subgroup of patients we also analysed the expression of FABP4 within the atherosclerotic lesion. In addition, we investigated the ability of different stimuli with relevance to atherosclerosis to regulate FABP4 expression in monocytes/macrophages.

Results

FABP4 levels were higher in patients with carotid atherosclerosis, both systemically and within the atherosclerotic lesion, with particular high mRNA levels in carotid plaques from patients with the most recent symptoms. Immunostaining of carotid plaques localized FABP4 to macrophages, while activated platelets and oxidized LDL were potent stimuli for FABP4 expression in monocytes/macrophages in vitro. When measured at the time of acute ischemic stroke, high plasma levels of FABP4 were significantly associated with total and cardiovascular mortality during follow-up, although we did not find that addition of FABP4 to the fully adjusted multivariate model had an effect on the prognostic discrimination for all-cause mortality as assessed by c-statistics.

Conclusions

FABP4 is linked to atherogenesis, plaque instability and adverse outcome in patients with carotid atherosclerosis and acute ischemic stroke.  相似文献   

10.

Objective

Fatty acid-binding proteins (FABPs) are a family of 14-15-kDa proteins, and some FABPs have been to be used as biomarkers of tissue injury by leak from cells. However, recent studies have shown that FABPs can be secreted from cells into circulation. Here we examined determinants and roles of circulating FABPs in a general population.

Methods

From the database of the Tanno-Sobetsu Study, a study with a population-based cohort design, data in 2011 for 296 subjects on no medication were retrieved, and FABP1∼5 in their serum samples were assayed.

Results

Level of FABP4, but not the other isoforms, showed a gender difference, being higher in females than in males. Levels of all FABPs were negatively correlated with estimated glomerular filtration rate (eGFR), but a distinct pattern of correlation with other clinical parameters was observed for each FABP isoform; significant correlates were alanine aminotransferase (ALT), blood pressure (BP), and brain natriuretic peptide (BNP) for FABP1, none besides eGFR for FABP2, age, BP, and BNP for FABP3, age, waist circumference (WC), BP, BNP, lipid variables, high-sensitivity C-reactive protein (hsCRP), and HOMA-R for FABP4, and age, WC, BP, ALT, BNP, and HOMA-R for FABP5. FABP4 is the most strongly related to metabolic markers among FABPs. In a multivariate regression analysis, FABP4 level was an independent predictor of HOMA-R after adjustment of age, gender, WC, BP, HDL cholesterol, and hsCRP.

Conclusions

Each FABP isoform level showed a distinct pattern of correlation with clinical parameters, although levels of all FABPs were negatively determined by renal function. Circulating FABP4 appears to be a useful biomarker for detecting pre-clinical stage of metabolic syndrome, especially insulin resistance, in the general population.  相似文献   

11.

Background

Fatty acid-binding protein 4 (FABP4/A-FABP/aP2) is expressed in not only adipocytes and macrophages but also peritubular capillaries in the normal kidney. We recently demonstrated that ectopic expression of FABP4, but not FABP1 known as liver FABP (L-FABP), in the glomerulus is associated with progression of proteinuria and renal dysfunction. However, urinary excretion of FABP4 has not been investigated.

Methods

Subjects who participated in the Tanno-Sobetsu Study, a study with a population-based cohort design, in 2011 (n = 392, male/female: 166/226) were enrolled. Urinary FABP4 (U-FABP4) and urinary albumin-to-creatinine ratio (UACR) were measured. Change in estimated glomerular filtration rate (eGFR) was followed up one year later.

Results

In 93 (23.7%) of the 392 subjects, U-FABP4 level was below the sensitivity of the assay. Subjects with undetectable U-FABP4 were younger and had lower UACR and higher eGFR levels than subjects with measurable U-FABP4. U-FABP4 level was positively correlated with age, systolic blood pressure and levels of serum FABP4 (S-FABP4), triglycerides, hemoglobin A1c (HbA1c), urinary FABP1 (U-FABP1) and UACR (r = 0.360, p<0.001). Age, S-FABP4, U-FABP1 and UACR were independent predictors of U-FABP4. On the other hand, systolic blood pressure, HbA1c and U-FABP4 were independently correlated with UACR. Reduction in eGFR after one year was significantly larger in a group with the highest tertile of baseline U-FABP4 than a group with the lowest tertile.

Conclusions

Urinary FABP4 level is independently correlated with level of albuminuria and possibly predicts yearly decline of eGFR. U-FABP4 would be a novel biomarker of glomerular damage.  相似文献   

12.

Background

Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR).

Methods and Principal Findings

VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT.

Conclusions

Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.  相似文献   

13.
Kim TH  Lee JY  Park JS  Park SW  Jang AS  Lee JY  Byun JY  Uh ST  Koh ES  Chung IY  Park CS 《PloS one》2011,6(8):e22711

Background

Aspirin-exacerbated respiratory disease (AERD) refers to the development of bronchoconstriction in asthmatics following the ingestion of aspirin. Although alterations in eicosanoid metabolites play a role in AERD, other immune or inflammatory mechanisms may be involved. We aimed to identify proteins that were differentially expressed in nasal polyps between patients with AERD and aspirin-tolerant asthma (ATA).

Methodology/Principal Findings

Two-dimensional electrophoresis was adopted for differential display proteomics. Proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS). Western blotting and immunohistochemical staining were performed to compare the amount of fatty acid-binding protein 1 (FABP1) in the nasal polyps of patients with AERD and ATA. Fifteen proteins were significantly up- (seven spots) or down-regulated in the nasal polyps of patients with AERD (n = 5) compared to those with ATA (n = 8). LC-MS revealed an increase in seven proteins expression and a decrease in eight proteins expression in patients with AERD compared to those with ATA (P = 0.003–0.045). FABP1-expression based on immunoblotting and immunohistochemical analysis was significantly higher in the nasal polyps of patients with AERD compared to that in patients with ATA. FABP1 was observed in epithelial, eosinophils, macrophages, and the smooth-muscle cells of blood vessels in the polyps.

Conclusions/Significance

Our results indicate that alterations in 15 proteins, including FABP1, may be related to the development of AERD.  相似文献   

14.
The Peruvian plant Lepidium meyenii (Maca) has been shown to possess neuroprotective activity both in vitro and in vivo [13]. Previous studies have also demonstrated the activity of the pentane extract and its macamides, the most representative lipophilic constituents of Maca, in the endocannabinoid system as fatty acid amide hydrolase (FAAH) inhibitors. One of the most active macamides, N-3-methoxybenzyl-linoleamide [4, 5], was studied to determine its mechanism of interaction with FAAH and whether it has inhibitory activity on mono-acyl glycerol lipase (MAGL), the second enzyme responsible for endocannabinoid degradation [6]. Macamide concentrations from 1 to 100 μM were tested using FAAH and MAGL inhibitor assay methods and showed no effect on MAGL. Tests with other conditions were performed in order to characterize the inhibitory mechanism of FAAH inhibition. N-3-methoxybenzyl-linoleamide displayed significant time-dependent and dose-dependent FAAH inhibitory activity. The mechanism of inhibition was most likely irreversible or slowly reversible. These results suggest the potential application of macamides isolated from Maca as FAAH inhibitors, as they might act on the central nervous system to provide analgesic, anti-inflammatory, or neuroprotective effects, by modulating the release of neurotransmitters.  相似文献   

15.
Anandamide (AEA) and other bioactive N-acylethanolamines (NAEs) are primarily inactivated by the enzyme fatty acid amide hydrolase (FAAH). Recently, FAAH-2 was discovered in humans, suggesting an additional enzyme can mediate NAE inactivation in higher mammals. Here, we performed a biochemical characterization of FAAH-2 and explored its capacity to hydrolyze NAEs in cells. In homogenate activity assays, FAAH-2 hydrolyzed AEA and palmitoylethanolamide (PEA) with activities ∼6 and ∼20% those of FAAH, respectively. In contrast, FAAH-2 hydrolyzed AEA and PEA in intact cells with rates ∼30–40% those of FAAH, highlighting a potentially greater contribution toward NAE catabolism in vivo than previously appreciated. In contrast to endoplasmic reticulum-localized FAAH, immunofluorescence revealed FAAH-2 was localized on lipid droplets. Supporting this distribution pattern, the putative N-terminal hydrophobic region of FAAH-2 was identified as a functional lipid droplet localization sequence. Lipid droplet localization was essential for FAAH-2 activity as chimeras excluded from lipid droplets lacked activity and/or were poorly expressed. Lipid droplets represent novel sites of NAE inactivation. Therefore, we examined substrate delivery to these organelles. AEA was readily trafficked to lipid droplets, confirming that lipid droplets constitute functional sites of NAE inactivation. Collectively, these results establish FAAH-2 as a bone fide NAE-catabolizing enzyme and suggest that NAE inactivation is spatially separated in cells of higher mammals.  相似文献   

16.

Background

Liver fatty acid–binding protein (FABP1) plays an inconclusive role in adiposity. We investigated the association of serum FABP1 levels with obesity and insulin resistance in Chinese young people under 30 years old.

Methodology and Principal Findings

Cross-sectional analysis including 200 obese and 172 normal-weight subjects matched for age and sex, anthropometric measurements were performed and serum FABP1 and biochemical characteristics were measured. Insulin resistance was determined by homeostasis model assessment of insulin resistance (HOMA-IR) and by the insulin sensitivity index (Si) derived from Bergman’s minimal model. FABP1 levels in obese subjects were significantly higher than those in normal-weight subjects (p<0.001) and the significance remained after adjustment for age, gender, alanine and aspartate aminotransferases (p<0.001). Serum FABP1 levels were significantly correlated with many metabolic-related parameters, with BMI and triglycerides as the independent determinants. FABP1 levels remained an independent risk factor of insulin resistance assessed by binary Si (OR = 1.868 per SD unit, 95% CI [1.035–3.373], p = 0.038) after adjustment for age, sex, BMI, waist circumference, systolic blood pressure, serum triacylglycerol, total cholesterol, HDL- and LDL-cholesterol,. FABP1 levels were also elevated with an increasing number of components of the metabolic syndrome (p for trend <0.001). Multiple regression modeling for the MetS and its components demonstrated that hypertriglyceridemia and low HDL-cholesterol were significantly correlated to serum FABP1 levels.

Conclusions and Significance

Serum FABP1 correlates positively with obesity and insulin resistance in Chinese young adults. Our data supports the fact that FABP1 might be an important mediator participating in fatty acid metabolism and energy balance.  相似文献   

17.

Background

FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile.

Objective

In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed.

Methods

The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot.

Results

In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group.

Conclusion

The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.  相似文献   

18.

Rationale

Lipid metabolism contributes to the formation of obesity-related glomerulopathy (ORG). Heart-type fatty acid binding protein (H-FABP or FABP3) is involved in lipid metabolism and was predicted to relate to renal lesions in obesity.

Methods

A total of 28 patients with ORG were investigated, and renal tissue from 7 kidney donors served as controls. Db/db mice with albuminuria were treated with Simvastatin for 12 weeks.

Results

Immunohistochemistry demonstrated the H-FABP staining in glomerular and tubular areas of patients with ORG, and the percentage of H-FABP in the glomerular area was significantly higher than in controls (15.8±1.62 versus 4.51±0.56%, P<0.001). Moreover, H-FABP expression correlated with proteinuria, high-density lipoprotein (HDL) cholesterol, waist circumference and the homeostatic model assessment – insulin resistance (HOMA-IR) among patients with ORG. Enhanced expression of H-FABP was also detected in the db/db mice, and expression increased from 8 to 20 weeks of age and was weakly related to increased albuminuria (r = 0.433; P = 0.020). Furthermore, H-FABP was co-localized with synaptopodin and demonstrated a podocyte pattern distribution. After Simvastation treatment, the urine albumin levels decreased with lipid levels and H-FABP expression in the glomeruli. The expression of H-FABP was related to Simvastatin treatment, albuminuria and triglycerides, while it was only linked with triglycerides and albuminuria (r = 0.643, P = 0.036).

Conclusions

This study confirmed an association of H-FABP with the pathogenesis of clinical and experimental ORG, and suggests that such a process might be related to podocytes and lipid dysmetabolism.  相似文献   

19.

Background

The histamine-1 receptor (H1R) antagonist ketotifen increased the threshold of discomfort in hypersensitive IBS patients. The use of peripherally restricted and more selective H1R antagonists may further improve treatment possibilities. We examined the use of fexofenadine and ebastine to reverse post-stress visceral hypersensitivity in maternally separated rats.

Methods

The visceromotor response to colonic distension was assessed in adult maternally separated and nonhandled rats pre- and 24 hours post water avoidance. Subsequently rats were treated with vehicle alone or different dosages of fexofenadine (1.8 and 18 mg/kg) or ebastine (0.1 and 1.0 mg/kg) and re-evaluated. Colonic tissue was collected to assess relative RMCP-2 and occludin expression levels by Western blot and histamine-1 receptor by RT-qPCR. β-hexosaminidase release by RBL-2H3 cells was used to establish possible mast cell stabilizing properties of the antagonists.

Key results

Water avoidance only induced enhanced response to distension in maternally separated rats. This response was reversed by 1.8 and 18 mg/kg fexofenadine. Reversal was also obtained by 1.0 but not 0.1 mg/kg ebastine. RMCP-2 expression levels were comparable in these two ebastine treatment groups but occludin was significantly higher in 1.0 mg/kg treated rats. There were no differences in histamine-1 receptor expression between nonhandled and maternally separated rats. Fexofenadine but not ebastine showed mast cell stabilizing quality.

Conclusions

Our results indicate that the peripherally restricted 2nd generation H1-receptor antagonists fexofenadine and ebastine are capable of reversing post stress visceral hypersensitivity in rat. These data justify future IBS patient trials with these well tolerated compounds.  相似文献   

20.

Background

Cow’s milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow’s milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays.

Objective

An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays.

Methods

Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains.

Results

After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5–10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow’s milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow’s milk allergic children.

Conclusion

Usage of our ‘unlimited’ source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow’s milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号