首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting (900 S cm?1) PEDOT:PSS layer, deposited by a stamp‐transfer lamination technique using a PDMS stamp, in combination with an Ag grid electrode provides a proficient and versatile transparent top contact. Lamination of large size PEDOT:PSS films has been achieved on variety of surfaces resulting in ITO‐free solar cells. Power conversion efficiencies of 2.1% and 3.1% have been achieved for P3HT:PCBM layers in inverted and conventional polarity configurations, respectively. The power conversion efficiency is similar to conventional glass/ITO‐based solar cells. The high fill factor (65%) and the unaffected open‐circuit voltage that are consistently obtained in thick active layer inverted geometry devices, demonstrate that the laminated PEDOT:PSS top electrodes provide no significant potential or resistive losses.  相似文献   

2.
Lambda DNA was stretched and patterned on mica surface using soft lithography. A highly diluted solution of amino propyl trimethoxy silane in hexane was deposited on a line patterned polydimethylsiloxane (PDMS) stamp. The functionalized stamp was then used to pick up DNA by molecular combing while the line patterns are parallel to the liquid surface. The stamp was then microcontact printed on freshly cleaved mica. We successfully obtained stretched DNA pattern on mica surface. DNA was found to be stretched in patterns perpendicular to those carved on the stamp. The stretched DNA population was large enough to be used for molecular biology mapping studies. Furthermore, the possibility of locating stretched DNA molecules in the desired position by stamping makes this method a good candidate for assembling non-semiconductor molecular devices.  相似文献   

3.
The quantification of apoptotic cells is an integral component of many cell-based assays in biological studies. However, current methods for quantifying apoptotic cells using conventional random cultures have shown great limitations, especially for the quantification of primary neurons. Randomly distributed neurons under primary culture conditions can lead to biased estimates, and vastly different estimates of cell numbers can be produced within the same experiment. In this study, we developed a simple, accurate, and reliable technique for quantifying apoptotic neurons by means of micropatterned cell cultures. A polydimethylsiloxane (PDMS) microstencil was used as a physical mask for micropatterning cell cultures, and primary granular neurons (GNs) were successfully cultured within the micropattern-confined regions and homogeneously distributed over the entire field of each pattern. As compared with the conventional method based on random cultures, the micropatterned culture method allowed for highly reproducible quantification of apoptotic cells. These results were also confirmed by using GNs derived from mice with neurodegeneration. We hope that this micropatterning method based on the use of a PDMS microstencil can overcome the technical obstacles existing in current biological studies and will serve as a powerful tool for facilitating the study of apoptosis-involved diseases.  相似文献   

4.
A microfluidic device in polydimethylsiloxane (PDMS) consisting of an eight lines micro-injection array integrated in a base flow channel has been realized. The device is assembled from multiple PDMS parts, which have been moulded using notably micromachined masters in SU-8 photoresist. In contact with a planar substrate, up to eight independent laminar flow lines with cross-sections of 100 x 200 microm(2) can be generated. Dedicated for the application of pharmaceutical compounds to electrogenic cells in vitro, this device was tested with a neuronal cell line, Mz1-cells. These were cultured on lines of laminin deposited onto polystyrene substrates by microcontact printing. We were able to inject into this culture multiple lines of coloured PBS in parallel to the orientation of cellular growth. No mixing between the individual flow lines did occur.  相似文献   

5.
Full details and a step-by-step guide suitable for printing proteins aligned to micron-sized sensors and subsequent integration and alignment of microfluidic structures are presented. The precise alignment and grafting of micron-sized biomolecule patterns with an underlying substrate at predefined locations is achieved using a novel semi-automated microcontact printer. Through integration of optical alignment methods in the x, y, and z directions, uniform contact of micron-sized stamps is achieved. Feature compression of the stamp is avoided by fine control of the stamp during contact. This printing method has been developed in combination with robust, compatible bioconjugate chemistry for patterning of a dextran-functionalized silicon oxide substrate with a NeutrAvidin-"inked" stamp and subsequent incubation with a biotin-functionalized protein. The bioconjugate chemistry is such that uniform coverage of the protein (without denaturation) over the printed motif is obtained and reproduction of the initial mask shape and dimensions is achieved. Later integration with a microfluidic structure aligned with the printed motif on the substrate is also described.  相似文献   

6.
Controlling adhesion of living animal cells plays a key role in biosensor fabrication, drug-testing technologies, basic biological research, and tissue engineering applications. Current techniques for cell patterning have two primary limitations: (1) they require photolithography, and (2) they are limited to patterning of planar surfaces. Here we demonstrate a simple, precision spraying method for both positive and negative patterning of planar and curved surfaces to achieve cell patterns rapidly and reproducibly. In this method, which we call precision spraying (PS), a polymer solution is aerosolized, focused with sheath airflow through an orifice, and deposited on the substrate using a deposition head to create approximately 25 microm sized features. In positive patterning, adhesive molecules, such as laminin or polyethylenimine (PEI) were patterned on polydimethylsiloxane (PDMS) substrates in a single spraying operation. A variety of animal cell types were found to adhere to the adhesive regions, and avoid the non-adhesive (bare PDMS) regions. In negative patterning, hydrophobic materials, such as polytetrafluoroethylene (PTFE) and PDMS, were patterned on glass substrates. Cells then formed patterns on the exposed glass regions and avoided the hydrophobic regions. Cellular patterns were maintained for up to 2 weeks in the presence of serum, which normally fouls non-adhesive regions. Additionally, we found that precision spraying enabled micropatterning of complex-curved surfaces. Our results show that precision spraying followed by cell plating enables rapid and flexible cellular micropatterning in two simple steps.  相似文献   

7.
The use of polymerized lipid bilayers as substrates for microcontact printing (muCP) of protein films was investigated. We have previously shown that vesicle fusion of bis-SorbPC, a dienoate lipid, on glass and silica substrates, followed by redox-initiated radical polymerization, produces a planar supported lipid bilayer (PSLB) that is ultrastable(1a) [Ross, E. E.; Rozanski, L. J.; Spratt, T.; Liu, S.; O'Brien, D. F.; Saavedra, S. S. Langmuir 2003, 19, 1752] and highly resistant to nonspecific adsorption of dissolved proteins [Ross, E. E.; Spratt, T.; Liu, S.; Rozanski, L. J.; O'Brien, D. F.; Saavedra, S. S. Langmuir 2003, 19, 1766].(1b) Here we demonstrate that muCP of bovine serum albumin (BSA) onto a dried poly(bis-SorbPC) PSLB from a poly(dimethylsiloxane) (PDMS) stamp produces a layer of strongly adsorbed protein, comparable in surface coverage to films printed on glass surfaces. Immobilization of proteins on poly(PSLB)s has potential applications in biosensing, and this work shows that direct muCP of proteins is a technically simple approach to create immobilized monolayers, as well as multilayers of different proteins.  相似文献   

8.
Cultured myotubes induced in vitro from myoblast cell lines have been widely used to investigate muscle functional properties and disease‐related biological phenotypes. Until now, several cell patterning techniques have been applied to regulate in vitro myotube structures. However, these previous studies required specific geometry patterns or soft materials for inducing efficient myotube formation. Thus, more simple and easy handling method will be promising. In this study, we aimed to provide a method to form C2C12 myotubes with regulated sizes and orientations in simple line patterns. We used a poly(dimethylsiloxane) (PDMS) stamp and a 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer solution to fabricate line patterns for myotube formation onto a culture dish. We confirmed that C2C12 myotubes of well‐defined size and orientation were reproducibly formed. In particular, myotubes formed in the micropatterned lines showed the increased fusion efficiency. Then, functional dynamics in the micropatterned myotubes were detected and analyzed using a calcium imaging method. We confirmed micropatterning in line patterns enhanced the responsiveness of myotubes to external electrical stimulations. These results indicate that micropatterning myoblasts with the MPC polymer is a simple and effective method to form functional myotube networks. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:220–225, 2015  相似文献   

9.
A new method for ultrathin grafting of pNIPAm on PDMS surfaces is introduced that employs plasma activation of the surface followed by thermal polymerization. This method is optimized for human primary SMC attachment and subsequent intact cell sheet detachment by lowering the temperature. The contractile gene expression of the cells showed that the contractile phenotype of the SMCs which is induced by aligning the cells through micropatterning is more preserved after thermoresponsive cell sheet detachment in contrast with enzymatic detachment. Given its simplicity and low cost, this thermoresponsive grafting method can be utilized for engineering patterned cell sheets for future bottom-up tissue engineering techniques.  相似文献   

10.
A recently developed method for surface modification, layer-by-layer (LbL) assembly, has been applied to silicone, and its ability to encourage endothelial cell growth and control cell growth patterns has been examined. The surfaces studied consisted of a precursor, with alternating cationic polyethyleneimine (PEI) and anionic sodium polystyrene sulfonate (PSS) layers followed by alternating gelatin and poly-d-lysine (PDL) layers. Film growth increased linearly with the number of layers. Each PSS/PEI bilayer was 3 nm thick, and each gelatin/PDL bilayer was 5 nm thick. All layers were more hydrophilic than the unmodified silicone rubber surface, as determined from contact angle measurements. The contact angle was primarily dictated by the outermost layer. Of the coatings studied, gelatin was the most hydrophilic. A film of (PSS/PEI)4/(gelatin/PDL)4/ gelatin was highly favorable for cell adhesion and growth, in contrast to films of (PSS/PEI)8 or (PSS/PEI)8/PSS. Cell growth patterns were successfully controlled by selective deposition of microspheres on silicone rubber, using microcontact printing with a silicone stamp. Cell adhesion was confined to the region of microsphere deposition. These results demonstrate that the LbL self-assembly technique provides a general approach to coat and selectively deposit films with nanometer thickness on silicone rubber. Furthermore, they show that this method is a viable technique for controlling cellular adhesion and growth.  相似文献   

11.
Microcontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.(1) While microcontact printing can be employed to directly print a large number of molecules, including proteins,(2) DNA,(3) and silanes,(4) the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and cells to specific patterns containing adhesive and resistant regions. This confinement can be used to control cell morphology and is useful for examining a variety of questions in protein and cell biology. Here, we describe a general method for the creation of well-defined protein patterns for cellular studies.(5) This process involves three steps: the production of a patterned master using photolithography, the creation of a PDMS stamp, and microcontact printing of a gold-coated substrate. Once patterned, these cell culture substrates are capable of confining proteins and/or cells (primary cells or cell lines) to the pattern. The use of self-assembled monolayer chemistry allows for precise control over the patterned protein/cell adhesive regions and non-adhesive regions; this cannot be achieved using direct protein stamping. Hexadecanethiol, the long chain alkane thiol used in the microcontact printing step, produces a hydrophobic surface that readily adsorbs protein from solution. The glycol-terminated thiol, used for backfilling the non-printed regions of the substrate, creates a monolayer that is resistant to protein adsorption and therefore cell growth.(6) These thiol monomers produce highly structured monolayers that precisely define regions of the substrate that can support protein adsorption and cell growth. As a result, these substrates are useful for a wide variety of applications from the study of intercellular behavior(7) to the creation of microelectronics.(8) While other types of monolayer chemistry have been used for cell culture studies, including work from our group using trichlorosilanes to create patterns directly on glass substrates,(9) patterned monolayers formed from alkane thiols on gold are straight-forward to prepare. Moreover, the monomers used for monolayer preparation are commercially available, stable, and do not require storage or handling under inert atmosphere. Patterned substrates prepared from alkane thiols can also be recycled and reused several times, maintaining cell confinement.(10).  相似文献   

12.
结合生物物理学与生物化学的微细加工技术已可以获得与生物大分子相近的特征尺寸,推动了微图形化技术在药物筛选与新药开发、组织工程、疾病诊断等领域的应用.综述了微图形化技术在生物医学领域的发展,讨论了光刻、软光刻、模板辅助构图、扫描探针加工、喷墨构图、激光诱导图形化等方法,分析了各种方法的优势、局限性与适用范围,指出分辨力与精度、图形化规模、实验加工条件等是选择不同图形化方法的主要依据.而基于生物物理学和生物化学等对纳米尺度的处理过程进行定量分析、进一步提高其生物兼容性及材料适应性、发展适合图形化芯片的体内微环境模拟技术等是微图形化技术进一步发展的方向.  相似文献   

13.
Ma Z  Gao BZ 《Biotechnology letters》2012,34(7):1385-1391
To understand how stem cells benefit native cardiomyocytes is crucial for cell-based therapies to rescue cardiomyocytes (CMCs) damaged during heart infarction and other cardiac diseases. However, the current conclusions on the protective effect of mesenchymal stem cells (MSCs) were obtained by analyzing the overall amount of protein and factor secretion in a conventional co-culture system. These results neglected the heterogeneity of MSC population and failed to determine the importance of cellular contact to the protective effects. To address these issues, we have constructed two biochips by microfabrication methods and laser-guided cell micropatterning technique. Using the biochips, the protective effect of MSCs on CMCs can be quantitatively analyzed at single-cell level with defined cellular contact. The role of cellular contact on protective effect can be clarified according to our statistical results.  相似文献   

14.
Protein micropatterning allows proteins to be precisely deposited onto a substrate of choice and is now routinely used in cell biology and in vitro reconstitution. However, drawbacks of current technology are that micropatterning efficiency can be variable between proteins and that proteins may lose activity on the micropatterns. Here, we describe a general method to enable micropatterning of virtually any protein at high specificity and homogeneity while maintaining its activity. Our method is based on an anchor that micropatterns well, fibrinogen, which we functionalized to bind to common purification tags. This enhances micropatterning on various substrates, facilitates multiplexed micropatterning, and dramatically improves the on-pattern activity of fragile proteins like molecular motors. Furthermore, it enhances the micropatterning of hard-to-micropattern cells. Last, this method enables subcellular micropatterning, whereby complex micropatterns simultaneously control cell shape and the distribution of transmembrane receptors within that cell. Altogether, these results open new avenues for cell biology.  相似文献   

15.
Increasing numbers of cell mechanotransduction studies are currently utilizing elastic substrates fabricated from polyacrylamide in the form of thin gels. Their versatility depends on the ability to ensure the appropriate gel stiffness and control the uniformity and geometry of extracellular matrix protein coating of the gel. Beginning with a brief quantitative emphasis on the elastic properties of polyacrylamide gels, we present an inexpensive and highly reproducible method for uniform coating with a wide variety of extracellular matrix proteins. We used a reducing agent, hydrazine hydrate, to modify nonreactive amide groups in polyacrylamide to highly reactive hydrazide groups that can form covalent bonds with aldehyde or ketone groups in oxidized proteins. This simple conjugation method overcomes the limitations of previously used photoactivatable cross-linkers: nonuniform coating due to nonuniformity of irradiation and technically challenging procedures for micropatterning. As demonstrated in our study of cell polarity during constrained migration, this conjugation method is especially effective in gel micropatterning by manual microcontact printing of protein patterns as small as 5 microm and enables numerous studies of constrained cell attachment and migration that were previously unfeasible due to high cost or difficulty in controlling the protein coating.  相似文献   

16.
We report in this paper two simple and effective methods to decorate glass surfaces that enable protein micropatterning and subsequent spatially controlled adhesion of cells. The first method combines simultaneously the potentialities of two existing techniques, namely microcontact printing (muCP) and microfluidic networks (muFN) to achieve dual protein patterning in a single step. The second method is mainly based on the well-known property of poly(ethylene glycol) (PEG) to resist against protein adsorption. Both approaches were used to produce heterogeneous surfaces on which micron-size or submicronic streptavidin-coated lines alternate with cell-repellent areas. We first describe the implementation of the two methods and discuss the main pitfalls to avoid. Then, using these templates, we have monitored the kinetics of attachment of individual biotinylated (i.e. "attractant" towards streptavidin) red blood cells by directly measuring the propagation velocity of the adhesion front. Depending on the surface density of biotin, we found two distinct regimes, in agreement with existing theoretical models.  相似文献   

17.
Micropatterning techniques provide direct control over the spatial organization of cells at the sub-mm scale. Regulation of these spatial parameters is important for controlling cell fate and cell function. While micropatterning has proved a powerful technique for understanding the impact of cell organization on cell behaviour, current methods for micropatterning cells require complex, specialized equipment that is not readily accessible in most biological and bioengineering laboratories. In addition, currently available methods require significant protocol optimization to ensure reliable and reproducible patterning. The inaccessibility of current methods has severely limited the widespread use of micropatterning as a tool in both biology and tissue engineering laboratories. Here we present a simple, cheap, and fast method to micropattern mammalian cells into stripes and circular patterns using Parafilm™, a common material found in most biology and bioengineering laboratories. Our method does not require any specialized equipment and does not require significant method optimization to ensure reproducible patterning. Although our method is limited to simple patterns, these geometries are sufficient for addressing a wide range of biological problems. Specifically, we demonstrate i) that using our Parafilm™ insert method we can pattern and co-pattern ARPE-19 and MDCK epithelial cells into circular and stripe micropatterns in tissue culture polystyrene (TCPS) wells and on glass slides, ii) that we can contain cells in the desired patterns for more than one month and iii) that upon removal of the Parafilm™ insert we can release the cells from the containment pattern and allow cell migration outward from the original pattern. We also demonstrate that we can exploit this confinement release feature to conduct an epithelial cell wound healing assay. This novel micropatterning method provides a reliable and accessible tool with the flexibility to address a wide range of biological and engineering problems that require control over the spatial and temporal organization of cells.  相似文献   

18.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   

19.
Micropatterning techniques provide direct control over the spatial organization of cells at the sub-mm scale. Regulation of these spatial parameters is important for controlling cell fate and cell function. While micropatterning has proved a powerful technique for understanding the impact of cell organization on cell behaviour, current methods for micropatterning cells require complex, specialized equipment that is not readily accessible in most biological and bioengineering laboratories. In addition, currently available methods require significant protocol optimization to ensure reliable and reproducible patterning. The inaccessibility of current methods has severely limited the widespread use of micropatterning as a tool in both biology and tissue engineering laboratories. Here we present a simple, cheap, and fast method to micropattern mammalian cells into stripes and circular patterns using Parafilm?, a common material found in most biology and bioengineering laboratories. Our method does not require any specialized equipment and does not require significant method optimization to ensure reproducible patterning. Although our method is limited to simple patterns, these geometries are sufficient for addressing a wide range of biological problems. Specifically, we demonstrate i) that using our Parafilm? insert method we can pattern and co-pattern ARPE-19 and MDCK epithelial cells into circular and stripe micropatterns in tissue culture polystyrene (TCPS) wells and on glass slides, ii) that we can contain cells in the desired patterns for more than one month and iii) that upon removal of the Parafilm? insert we can release the cells from the containment pattern and allow cell migration outward from the original pattern. We also demonstrate that we can exploit this confinement release feature to conduct an epithelial cell wound healing assay. This novel micropatterning method provides a reliable and accessible tool with the flexibility to address a wide range of biological and engineering problems that require control over the spatial and temporal organization of cells.  相似文献   

20.
The ability to pattern proteins and other biomolecules onto substrates is important for capturing the spatial complexity of the extracellular environment. Development of microcontact printing by the Whitesides group (http://gmwgroup.harvard.edu/) in the mid-1990s revolutionalized this field by making microelectronics/microfabrication techniques accessible to laboratories focused on the life sciences. Initial implementations of this method used polydimethylsiloxane (PDMS) stamps to create patterns of functionalized chemicals on material surfaces1. Since then, a range of innovative approaches have been developed to pattern other molecules, including proteins2. This video demonstrates the basic process of creating PDMS stamps and uses them to pattern proteins, as these steps are difficult to accurately express in words. We focus on patterning the extracellular matrix protein fibronectin onto glass coverslips as a specific example of patterning. An important component of the microcontact printing process is a topological master, from which the stamps are cast; the raised and lowered regions of the master are mirrored into the stamp and define the final pattern. Typically, a master consists of a silicon wafer coated with photoresist and then patterned by photolithography, as is done here. Creation of masters containing a specific pattern requires specialized equipment, and is best approached in consultation with a fabrication center or facility. However, almost any substrate with topology can be used as a master, such as plastic diffraction gratings (see Reagents for one example), and such serendipitous masters provide readily available, simple patterns. This protocol begins at the point of having a master in hand.Open in a separate windowClick here to view.(56M, flv)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号