首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The ubiquitous hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) upon stable overexpression in normal fibroblasts (F-HABP07) has been reported to induce mitochondrial dysfunction, growth retardation and apoptosis after 72 h of growth. HABP1 has been observed to accumulate in the mitochondria resulting in generation of excess Reactive Oxygen Species (ROS), mitochondrial Ca++ efflux and drop in mitochondrial membrane potential. In the present study, autophagic vacuolation was detected with monodansylcadaverin (MDC) staining from 36 h to 60 h of culture period along with elevated level of ROS in F-HABP07 cells. Increased expression of autophagic markers like MAP-LC3-II, Beclin 1 and autophagic modulator, DRAM confirmed the occurrence of the phenomenon. Reduced vacuole formation was observed upon treatment with 3-MA, a known PI3 kinase inhibitor, only at 32 h and was ineffective if treated later, as high ROS level was already attained. Treatment of F111 and F-HABP07 cells with bafilomycin A1 further indicated an increase in autophagosome formation along with autophagic degradation in HABP1 overexpressed fibroblasts. Comparison between normal fibroblast (F111) and F-HABP07 cells indicate reduced level of polymeric HA, its depolymerization and perturbed HA-HABP1 interaction in F-HABP07. Interestingly, supplementation of polymeric HA, an endogenous ROS scavenger, in the culture medium prompted reduction in number of vacuoles in F-HABP07 along with drop in ROS level, implying that excess ROS generation triggers initiation of autophagic vacuole formation prior to apoptosis due to overexpression of HABP1. Thus, the phenomenon of autophagy takes place prior to apoptosis induction in the HABP1 overexpressing cell line, F-HABP07.  相似文献   

2.
Hyaluronan binding protein (HABP1), located on human chromosome 17p13.3, was identified and characterized as being involved in cellular signaling from our laboratory. Here, we demonstrate that HABP1 expression in Schizosaccharomyces pombe induces growth inhibition, morphological abnormalities like elongation, multinucleation and aberrant cell septum formation in several strains of S. pombe, implicating its role in cell cycle progression and cytokinesis. This argument is further strengthened by an observed delay in the maximal expression of cell cycle regulatory proteins like CDC 2 and CDC 25 coupled to the direct interaction of HABP1 with CDC 25. In order to pinpoint the interacting domain of HABP1, its N- and C-terminal truncated variants (DeltaN.HABP1 and DeltaC.HABP1, respectively) were utilized which revealed that while expression of the former did not alter the phenotype, the latter generated morphological changes similar to those imparted upon HABP1 expression. It was also noted that along with HABP1, DeltaC.HABP1 too directly interacts with CDC 25 while DeltaN.HABP1 does not. Taken together, these data suggest that HABP1 induces morphological changes and modulates the cell cycle by interacting with proteins like CDC 25 through its N-terminal alpha-helix.  相似文献   

3.
4.
The ability of Plasmodium falciparum-infected red blood cells (IRBCs) to bind to vascular endothelium, thus enabling sequestration in vital host organs, is an important pathogenic mechanism in malaria. Adhesion of P. falciparum IRBCs to platelets, which results in the formation of IRBC clumps, is another cytoadherence phenomenon that is associated with severe disease. Here, we have used in vitro cytoadherence assays to demonstrate, to our knowledge for the first time, that P. falciparum IRBCs use the 32-kDa human protein gC1qR/HABP1/p32 as a receptor to bind to human brain microvascular endothelial cells. In addition, we show that P. falciparum IRBCs can also bind to gC1qR/HABP1/p32 on platelets to form clumps. Our study has thus identified a novel host receptor that is used for both adhesion to vascular endothelium and platelet-mediated clumping. Given the association of adhesion to vascular endothelium and platelet-mediated clumping with severe disease, adhesion to gC1qR/HABP1/p32 by P. falciparum IRBCs may play an important role in malaria pathogenesis.  相似文献   

5.
Overexpression of the mature form of hyaluronan-binding protein 1 (HABP1/gC1qR/p32), a ubiquitous multifunctional protein involved in cellular signaling, in normal murine fibroblast cells leads to enhanced generation of reactive oxygen species (ROS), mitochondrial dysfunction, and ultimately apoptosis with the release of cytochrome c. In the present study, human liver cancer cell line HepG2, having high intracellular antioxidant levels was chosen for stable overexpression of HABP1. The stable transformant of HepG2, overexpressing HABP1 does not lead to ROS generation, cellular stress, and apoptosis, rather it induced enhanced cell growth and proliferation over longer periods. Phenotypic changes in the stable transformant were associated with the increased "HA pool," formation of the "HA cable" structure, up-regulation of HA synthase-2, and CD44, a receptor for HA. Enhanced cell survival was further supported by activation of MAP kinase and AKT-mediated cell survival pathways, which leads to an increase in CYCLIN D1 promoter activity. Compared with its parent counterpart HepG2, the stable transformant showed enhanced tumorigenicity as evident by its sustained growth in low serum conditions, formation of the HA cable structure, increased anchorage-independent growth, and cell-cell adhesion. This study suggests that overexpression of HABP1 in HepG2 cells leads to enhanced cell survival and tumorigenicity by activating HA-mediated cell survival pathways.  相似文献   

6.
Hyaluronan-binding protein 1 (HABP1), a ubiquitous multifunctional protein, interacts with hyaluronan, globular head of complement component 1q (gC1q), and clustered mannose and has been shown to be involved in cell signalling. In vitro, this recombinant protein isolated from human fibroblast exists in different oligomeric forms, as is evident from the results of various independent techniques in near-physiological conditions. As shown by size-exclusion chromatography under various conditions and glutaraldehyde cross-linking, HABP1 exists as a noncovalently associated trimer in equilibrium with a small fraction of a covalently linked dimer of trimers, i.e. a hexamer. The formation of a covalently-linked hexamer of HABP1 through Cys186 as a dimer of trimers is achieved by thiol group oxidation, which can be blocked by modification of Cys186. The gradual structural transition caused by cysteine-mediated disulfide linkage is evident as the fluorescence intensity increases with increasing Hg(2+) concentration until all the HABP1 trimer is converted into hexamer. In order to understand the functional implication of these transitions, we examined the affinity of the hexamer for different ligands. The hexamer shows enhanced affinity for hyaluronan, gC1q, and mannosylated BSA compared with the trimeric form. Our data, analyzed with reference to the HABP1/p32 crystal structure, suggest that the oligomerization state and the compactness of its structure are factors that regulate its function.  相似文献   

7.
8.
Hyaluronan binding protein 1 (HABP1) is a ubiquitously expressed multifunctional phospho-protein that interacts with a wide range of ligands and is implicated in cell signalling. Recently, we have reported that HABP1 is an endogenous substrate for MAP kinase and upon mitogenic stimulation it is translocated to the nucleus in a MAP kinase-dependent manner (Biochem. Biophys. Res. Commun. 291(4) (2002) 829-837). This prompted us to investigate the role of HABP1 in cell growth or otherwise in low MAP kinase background. We demonstrate that HABP1, when overexpressed in normal rat skin fibroblasts, remained in the cytosol, primarily concentrated around the nuclear periphery. However, HABP1 overexpressing cells showed extensive vacuolation and reduced growth rate, which was corrected by frequent medium replenishment. Further investigation revealed that HABP1 overexpressing cells undergo apoptosis, as detected by TUNEL assay, induction of Bax expression, and FACS analysis, and they failed to enter into the S-phase. Periodic medium supplementation prevented these cells from undergoing apoptotic death. We also demonstrate that upon induction of apoptosis in HeLa cells by cisplatin, HABP1 level is upregulated, indicating a correlation between HABP1 and cell death in a normal cellular environment.  相似文献   

9.
Constitutively expressed HABP1 in normal murine fibroblast cell line induces growth perturbation, morphological abnormalities along with initiation of apoptosis. Here, we demonstrate that though HABP1 accumulation started in mitochondria from 48 hr of growth, induction of apoptosis with the release of cytochrome c and apoptosome complex formation occurred only after 60 hr. This mitochondrial dysfunction was due to gradual increase in ROS generation in HABP1 overexpressing cells. Along with ROS generation, increased Ca 2+ influx in mitochondria leading to drop in membrane potential was evident. Interestingly, upon expression of HABP1, the respiratory chain complex I was shown to be significantly inhibited. Electronmicrograph confirmed defective mitochondrial ultrastructure. The reduction in oxidant generation and drop in apoptotic cell population accomplished by disruption of HABP1 expression, corroborating the fact that excess ROS generation in HABP1 overexpressing cells leading to apoptosis was due to mitochondrial HABP1 accumulation.  相似文献   

10.
11.
12.
The role of hyaluronan binding protein 1 (HABP1) in cell signaling was investigated and in vitro kinase assay demonstrated that it is a substrate for MAP kinase. Phosphorylation of endogenous HABP1 was also observed following treatment of J774 cells with PMA. HABP1 was coimmunoprecipitated with activated ERK, confirming their physical interaction in the cellular context. Upon PMA stimulation of normal rat fibroblast (F111) and transformed (HeLa) cells, the HABP1 level in the cytoplasm gradually decreased with a parallel increase in the nucleus. In HeLa cells, within 6 h of PMA treatment, HABP1 was completely translocated to the nucleus, which was prevented by PD98059, a selective inhibitor of ERK. We also observed that the nuclear translocation of HABP1 is concurrent with that of ERK, suggesting that ERK activation is a requirement for the translocation of HABP1. It is thus established for the first time that HABP1 is a substrate for ERK and an integral part of the MAP kinase cascade.  相似文献   

13.
CD4+ T cell loss is central to HIV pathogenesis. In the initial weeks post-infection, the great majority of dying cells are uninfected CD4+ T cells. We previously showed that the 3S motif of HIV-1 gp41 induces surface expression of NKp44L, a cellular ligand for an activating NK receptor, on uninfected bystander CD4+ T cells, rendering them susceptible to autologous NK killing. However, the mechanism of the 3S mediated NKp44L surface expression on CD4+ T cells remains unknown. Here, using immunoprecipitation, ELISA and blocking antibodies, we demonstrate that the 3S motif of HIV-1 gp41 binds to gC1qR on CD4+ T cells. We also show that the 3S peptide and two endogenous gC1qR ligands, C1q and HK, each trigger the translocation of pre-existing NKp44L molecules through a signaling cascade that involves sequential activation of PI3K, NADPH oxidase and p190 RhoGAP, and TC10 inactivation. The involvement of PI3K and NADPH oxidase derives from 2D PAGE experiments and the use of PIP3 and H2O2 as well as small molecule inhibitors to respectively induce and inhibit NKp44L surface expression. Using plasmid encoding wild type or mutated form of p190 RhoGAP, we show that 3S mediated NKp44L surface expression on CD4+ T cells is dependent on p190 RhoGAP. Finally, the role of TC10 in NKp44L surface induction was demonstrated by measuring Rho protein activity following 3S stimulation and using RNA interference. Thus, our results identify gC1qR as a new receptor of HIV-gp41 and demonstrate the signaling cascade it triggers. These findings identify potential mechanisms that new therapeutic strategies could use to prevent the CD4+ T cell depletion during HIV infection and provide further evidence of a detrimental role played by NK cells in CD4+ T cell depletion during HIV-1 infection.  相似文献   

14.

Background

Hepatitis C virus (HCV) has been reported to regulate cellular microRNAs (miRNAs). The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC), but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152) by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.

Methods

MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR). Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.

Results

HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT–PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001), miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.

Conclusion

These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell proliferation of liver cancer cells. MiR-152 may have a therapeutic potential to suppress liver cancer proliferation.  相似文献   

15.
16.
贾绍辉  姜华  杜仲夏  陈正望 《生物磁学》2013,(3):405-407,540
目的:探讨炎症因子Daintain/AIF-1对肝癌细胞耐药性产生的影响。方法:利用MTT法测定耐药HepG2细胞株的IC50,流式细胞术测定耐药细胞株期凋亡率,HPLC方法检测隔耐药细胞株胞内顺铂的外排。结果:Daintain/AIF-1提高了HepG2耐药细胞株的IC50;再次受到相同剂量顺铂的攻击时,Daintain/AIF-1与顺铂联合运用构建的耐药细胞株凋亡率明显下降;Daintain/AIF-1促进了耐药细胞株胞内顺铂的外排。结论:此研究表明Daintain/AIF-1通过影响胞内顺铂的外排而促进了肝癌细胞对顺铂耐药性的产生。  相似文献   

17.
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype.  相似文献   

18.
采用HCV 1a/1b嵌合体cDNA构建表达质粒转染HepG2细胞,以免疫组化和Westem blotting检测HCV蛋白表达,RT-PCR检测HCV正、负链RNA,研究丙型肝炎病毒(HCV) 1a和1b型嵌合体全长cDNA在HepG2细胞中的复制和表达。结果证明,转染细胞中检测到分子量约70kDa的HCV NS3蛋白,转染细胞连续传20代,仍能检测到HCV正、负链RNA。表明该HCV嵌合体可以在细胞中复制和表达,HCV1b型的RNA依赖的RNA聚合酶(RdRp)可以起始含1a型非编码区的病毒复制。HCV5′端非翻译区第11、12、13、34和35位核苷酸改变可不影响其与核糖体结合。3′非翻译区9400,9403和9407位核苷酸改变,9435位缺失“A”,9409,9410位及9495,9496,9497位分别插入“TT”和“AAT”可不影响RdRp的生物活性。本研究对阐明HCV复制和翻译机制有重要意义。  相似文献   

19.
HCV 1a/1b型嵌合体能在HepG2细胞内复制与表达   总被引:2,自引:0,他引:2  
采用HCV 1a/1b嵌合体cDNA构建表达质粒转染HepG2细胞,以免疫组化和Western blotting检测HCV蛋白表达,RT-PCR检测HCV正、负链RNA,研究丙型肝炎病毒(HCV)1a和1b型嵌合体全长cDNA在HepG2细胞中的复制和表达.结果证明,转染细胞中检测到分子量约70 kDa的HCV NS3蛋白, 转染细胞连续传20代, 仍能检测到HCV正、负链RNA.表明该HCV嵌合体可以在细胞中复制和表达,HCV 1b型的RNA依赖的RNA聚合酶(RdRp)可以起始含1a型非编码区的病毒复制. HCV 5′端非翻译区第11、12、13、34和35位核苷酸改变可不影响其与核糖体结合.3′非翻译区9400,9403和9407位核苷酸改变,9435位缺失"A",9409,9410位及9495,9496,9497位分别插入"TT"和"AAT"可不影响RdRp的生物活性.本研究对阐明HCV复制和翻译机制有重要意义.  相似文献   

20.
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号