首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We present a system for measuring planar lipid bilayer properties. The system is composed of a control unit, an output stage, an LCR meter, pumps for filling reservoirs, a bath with temperature regulation and a measurement chamber with four electrodes. The planar lipid bilayer is automatically formed using a folding method on apertures of different sizes. The automatization is assured by two syringes, which are clamped in actuators. Actuators are driven and controlled by a control unit via RS-232 communication. The temperature of the planar lipid bilayer can be regulated between 15 and 55 °C. The regulation is assured by insertion of the measurement chamber into the temperature-regulated bath. Different shapes of voltage- or current-clamp signals can be applied to the planar lipid bilayer. By measuring the response of the planar lipid bilayer to the applied signal, the capacitance and breakdown voltage of the planar lipid bilayer can be determined. The cutoff frequencies of the system output stage for voltage- and current-clamp methods are 11 and 17 kHz, respectively.  相似文献   

2.
Liposomal formulation of curcumin is an important therapeutic agent for the treatment of various cancers. Despite extensive studies on the biological effects of this formulation in cancer treatment, much remains unknown about curcumin–liposome interactions. Understanding how different lipid bilayers respond to curcumin molecule may help us to design more effective liposomal curcumin. Here, we used molecular dynamics simulation method to investigate the behavior of curcumin in two lipid bilayers commonly used in preparation of liposomal curcumin, namely dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG). First, the free energy barriers for translocation of one curcumin molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). The computed free energy profile exhibits a global minimum at the solvent–headgroup interface (LH region) for both lipid membranes. We also evaluated the free energy difference between the equilibrium position of curcumin in the lipid bilayer and bulk water as the excess chemical potential. Our results show that curcumin has the higher affinity in DMPG compared to DPPC lipid bilayer (?8.39 vs. ?1.69 kBT) and this is related to more hydrogen bond possibility for curcumin in DMPG lipid membrane. Next, using an unconstrained molecular dynamic simulation with curcumin initially positioned at the center of lipid bilayer, we studied various properties of each lipid bilayer system in the presence of curcumin molecule that was in full agreement with PMF and experimental data. The results of these simulation studies suggest that membrane composition could have a large effect on interaction of curcumin–lipid bilayer.  相似文献   

3.
Regulation of membrane protein functions due to hydrophobic coupling with a lipid bilayer has been investigated. An energy formula describing interactions between lipid bilayer and integral ion channels with different structures, which is based on the screened Coulomb interaction approximation, has been developed. Here the interaction energy is represented as being due to charge-based interactions between channel and lipid bilayer. The hydrophobic bilayer thickness channel length mismatch is found to induce channel destabilization exponentially while negative lipid curvature linearly. Experimental parameters related to channel dynamics are consistent with theoretical predictions. To measure comparable energy parameters directly in the system and to elucidate the mechanism at an atomistic level we performed molecular dynamics (MD) simulations of the ion channel forming peptide–lipid complexes. MD simulations indicate that peptides and lipids experience electrostatic and van der Waals interactions for short period of time when found within each other’s proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides (in ion channel) and lipids (in lipid bilayer) due to mainly their charge properties. The results of in silico MD studies taken together with experimental observable parameters and theoretical energetic predictions suggest that the peptides induce ion channels inside lipid membranes due to peptide–lipid physical interactions. This study provides a new insight helping better understand of the underlying mechanisms of membrane protein functions in cell membrane leading to important biological implications.  相似文献   

4.
An instrument for optical waveguide lightmode spectroscopy (OWLS) was designed and developed for measurements at different and controlled temperatures in a range of 15 degrees C around room temperature. The instrument allows to scan the waveguide modes at different wavelengths on the same optical chip using different lasers. This instrument was used to monitor DMPC lipid bilayer main phase transition around the critical temperature. The main problem in these experiments is that the OWLS measurements do not give enough information about an optically anisotropic system like a lipid bilayer. Experimental OWLS data at two different wavelengths can however approximately solve the problem. The temperature dependence of the thickness and the refractive indices (ordinary and extraordinary) for the lipid bilayer around the phase transition is presented. (A theoretical derivation of the extraordinary refractive index is given in.)  相似文献   

5.
Magnetically oriented lipid/detergent bilayers are potentially useful for studies of membrane-associated molecules and complexes using x-ray scattering and nuclear magnetic resonance (NMR). To establish whether the system is a reasonable model of a phospholipid bilayer, we have studied the system using x-ray solution scattering to determine the bilayer thickness, interparticle spacing, and orientational parameters for magnetically oriented lipid bilayers. The magnetically orientable samples contain the phospholipid L-alpha-dilauroylphosphatidylcholine (DLPC) and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) in a 3:1 molar ratio in 70% water (w/v) and are similar to magnetically orientable samples used as NMR media for structural studies of membrane-associated molecules. A bilayer thickness of 30 A was determined for the DLPC/CHAPSO particles, which is the same as the bilayer thickness of pure DLPC vesicles, suggesting that the CHAPSO is not greatly perturbing the lipid bilayer. These data, as well as NMR data on molecules incorporated in the oriented lipid particles, are consistent with the sample consisting of reasonably homogeneous and well dispersed lipid particles. Finally, the orientational energy of the sample suggests that the size of the cooperatively orienting unit in the samples is 2 x 10(7) phospholipid molecules.  相似文献   

6.
Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Nav). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Nav function and lipid bilayer properties. We examined the effects of these agents on Nav in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Nav and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Nav function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia.  相似文献   

7.
The degree of dependence of a lipid bilayer's surface properties on its conformational state is still an unresolved question. Surface properties are functions of molecular organization in the complex interfacial region. In the past, they were frequently measured using fluorescence spectroscopy. Since a fluorescent probe provides information on its local environment, there is a need to estimate the effect caused by the probe itself. In this paper, we address this question by calculating how lipid head-group orientation effects the fluorescence intensity of Fluorescein-PE (a probe that is sensitive to surface potential). In the theoretical model assumed the lipid bilayer state and the interactions between the charged fluorescent probe and the surrounding lipid molecules was evaluated. The results of this theoretical analysis were compared with experimentally obtained data. A lipid bilayer formed from DPPC was chosen as the experimental system, since it exhibits all the major conformational states within a narrow temperature range of 30 degrees C-45 degrees C. Fluorescein-PE fluorescence intensity depends on local pH, which in turn is sensitive to local electrostatic potential in the probe's vicinity. This local electrostatic potential is generated by lipid head-group dipole orientation. We have shown that the effect of the probe on lipid bilayer properties is limited when the lipid bilayer is in the gel phase, whereas it is more pronounced when the membrane is liquid-crystalline. This implies that Fluorescein-PE is a good reporter of local electrostatic fields when the lipid bilayer is in the gel phase, and is a poor reporter when the membrane is in the liquid-crystalline state.  相似文献   

8.
Membrane-peptide interactions are involved in many crucial biological and pharmacological activities. To clarify the interaction mode of membrane-peptide complexes, it is important to analyze both the dynamic properties and the contact residues of the membrane-bound peptide. In this study, we investigated the dynamic properties of a peptide bound to a lipid bilayer, using relaxation and amide-water exchange analyses, and directly determined the membrane-peptide interface, using the cross-saturation method. For the models of a lipid bilayer and a peptide, isotropic bicelles and mastoparan were used, respectively. The results indicate that mastoparan had a heterogeneous distribution of motion over various timescales and interacted with the lipid bilayer by using its hydrophobic side; the molecule was located within the lipid bilayer rather than on the surface, as thought previously. This study shows that the cross-saturation method is useful for determining the interface of not only protein-protein but also membrane-peptide complexes.  相似文献   

9.
Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.  相似文献   

10.
An artificially created lipid bilayer is an important platform in studying ion channels and engineered biosensor applications. However, a lipid bilayer created using conventional techniques is fragile and short-lived, and the measurement of ion channels requires expertise and laborious procedures, precluding practical applications. Here, we demonstrate a storable droplet lipid bilayer precursor frozen with ion channels, resulting in a droplet interface bilayer upon thawing. A small vial with an aqueous droplet in organic solution was flash frozen in -80 °C methanol immediately after an aqueous droplet was introduced into the organic solution and gravity draws the droplet down to the interface upon thawing. A lipid bilayer created along the interface using this method had giga-ohm resistance and typical specific capacitance values. The noise level of this system is favorably comparable to the conventional system. The subsequent incorporation of ion channels, alpha-hemolysin and gramicidin A, showed typical conductance values consistent with those in previous literatures. This novel system to create a lipid bilayer as a whole can be automated from its manufacture to use and indefinitely stored when frozen. As a result, ion channel measurements can be carried out in any place, increasing the accessibility of ion channel studies as well as a number of applications, such as biosensors, ion channel drug screening, and biophysical studies.  相似文献   

11.
The glass-supported planar lipid bilayer system has been utilized in a variety of disciplines. One of the most useful applications of this technique has been in the study of immunological synapse formation, due to the ability of the glass-supported planar lipid bilayers to mimic the surface of a target cell while forming a horizontal interface. The recent advances in super-resolution imaging have further allowed scientists to better view the fine details of synapse structure. In this study, one of these advanced techniques, stimulated emission depletion (STED), is utilized to study the structure of natural killer (NK) cell synapses on the supported lipid bilayer. Provided herein is an easy-to-follow protocol detailing: how to prepare raw synthetic phospholipids for use in synthesizing glass-supported bilayers; how to determine how densely protein of a given concentration occupies the bilayer''s attachment sites; how to construct a supported lipid bilayer containing antibodies against NK cell activating receptor CD16; and finally, how to image human NK cells on this bilayer using STED super-resolution microscopy, with a focus on distribution of perforin positive lytic granules and filamentous actin at NK synapses. Thus, combining the glass-supported planar lipid bilayer system with STED technique, we demonstrate the feasibility and application of this combined technique, as well as intracellular structures at NK immunological synapse with super-resolution.  相似文献   

12.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.  相似文献   

13.
Pressure is found to destabilize the non-bilayer phase with respect to the bilayer in a model lipid system. The lamellar to inverted hexagonal (H11) phase transition of aqueous egg phosphatidylethanolamine is shifted to higher temperatures by hydrostatic pressure. The slope of the increase in transition temperature is constant to beyond 300 bar, and is greater than that seen for other lipid phase transitions. This behavior is consistent with the hypothesis that increasing chain disorder drives the conversion from the bilayer into the hexagonal phase. If this non-bilayer lipid phase is an intermediate in membrane fusion, then pressure should inhibit the process. This may explain the inhibition of chemical transmission at neural synapses by pressure.  相似文献   

14.
The phase stability of a fluid lipid bilayer composed of a mixture of DC18PC, (DSPC), and a shorter DCns PC, with ns from 8 to 17, has been studied using a self-consistent field theory that explicitly includes molecular details and configurational properties of the lipid molecules. Phase separation between two liquid phases was found when there was a sufficient mismatch between the hydrophobic thicknesses of the two bilayers composed entirely of one component or the other. This occurs when ns ≤ 12 and there is a sufficient concentration of the shorter lipid. The mixture separates into a thin bilayer depleted of DSPC and a thick bilayer enriched in DSPC. Even when there is no phase separation, as in the cases when there is either insufficient concentration of a sufficiently short lipid or any concentration of a lipid with ns > 12, we observe that the effect of the shorter lipid is to increase the susceptibility of the system to fluctuations in the concentration. This is of interest, given that a common motif for the anchoring of proteins to the plasma membrane is via a myristoyl chain, that is, one with 14 carbons.  相似文献   

15.
The distribution of a small lipid soluble molecule across a lipid bilayer has been determined using fluorescence quenching techniques. The neutral form of the amine, N,N-dimethylaniline (DMA) quenches the fluorescence of a series of n-(9-anthroyloxy) fatty acids (n = 2,6,9,12,16) which place a fluorophore at a graded series of positions from the surface to the centre of the lipid bilayer. A method is described for determining the partition coefficient of a quencher at each transverse position. The results show that DMA is located at all depths within the bilayer leaflet but that it is concentrated at the bilayer centre and to a lesser extent at the bilayer surface.  相似文献   

16.
To investigate drug–membrane protein interactions, an artificial tethered lipid bilayer system was constructed for the functional integration of membrane proteins with large extra-membrane domains such as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (i.e., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath. Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The platform allowed to follow MDR!-statin-based drug interactions in vitro. Each binding event and lipid bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal Microbalance–Dissipation systems, and Atomic Force Microscopy was used for visualization experiments.  相似文献   

17.
Free energy profiles for insertion of a hydrophobic transmembrane protein α-helix (M2 from CFTR) into a lipid bilayer have been calculated using coarse-grained molecular dynamics simulations and umbrella sampling to yield potentials of mean force along a reaction path corresponding to translation of a helix across a lipid bilayer. The calculated free energy of insertion is smaller when a bilayer with a thinner hydrophobic region is used. The free energies of insertion from the potentials of mean force are compared with those derived from a number of hydrophobicity scales and with those derived from translocon-mediated insertion. This comparison supports recent models of translocon-mediated insertion and in particular suggests that: 1), helices in an about-to-be-inserted state may be located in a hydrophobic region somewhat thinner than the core of a lipid bilayer; and/or 2), helices in a not-to-be-inserted state may experience an environment more akin (e.g., in polarity/hydrophobicity) to the bilayer/water interface than to bulk water.  相似文献   

18.
Intracellular lipid translocation is mediated by lipid transfer proteins and their functional impairments cause severe disorder in lipid metabolism. However, molecular mechanisms of protein-mediated lipid transfer remain unclear since conventional assay methods could not observe elementary processes in the lipid transfer reaction, such as lipid bilayer binding and lipid uptake. In this study, we found that ceramide extraction mediated by a ceramide trafficking protein (CERT) could be detected as decreasing the response of surface plasmon resonance (SPR). Based on this finding, we developed a novel real-time assay method that enables quantitative evaluation of the ceramide extraction activity of CERT, using the SPR technique. Performing this SPR-based assay using ceramide-embedded and ceramide-free lipid bilayers as ligands allows for the exclusive investigation of ceramide uptake processes, differentiating them from other CERT-membrane binding events. Furthermore, mutagenesis experiments of CERT using this SPR-based assay clearly elucidated whether an amino acid residue plays a role in the ceramide uptake process or the lipid bilayer binding process. This SPR-based assay method can separately evaluate the lipid extraction activity and lipid bilayer binding activity of the lipid transfer proteins, and provide more detailed information about lipid transfer phenomena.  相似文献   

19.
A distinguishing feature of Archaeal plasma membranes is that their phospholipids contain ether-links, as opposed to bacterial and eukaryotic plasma membranes where phospholipids primarily contain ester-links. Experiments show that this chemical difference in headgroup-tail linkage does produce distinct differences in model bilayer properties. Here we examine the effects of salt on bilayer structure in the case of an ether-linked lipid bilayer. We use molecular dynamics simulations and compare equilibrium properties of two model lipid bilayers in NaCl salt solution – POPC and its ether-linked analog that we refer to as HOPC. We make the following key observations. The headgroup region of HOPC “adsorbs” fewer ions compared to the headgroup region of POPC. Consistent with this, we note that the Debye screening length in the HOPC system is ∼ 10% shorter than that in the POPC system. Herein, we introduce a protocol to identify the lipid-water interfacial boundary that reproduces the bulk salt distribution consistent with Gouy-Chapman theory. We also note that the HOPC bilayer has excess solvent in the headgroup region when compared to POPC, coinciding with a trough in the electrostatic potential. Waters in this region have longer autocorrelation times and smaller lateral diffusion rates compared to the corresponding region in the POPC bilayer, suggesting that the waters in HOPC are more strongly coordinated to the lipid headgroups. Furthermore, we note that it is this region of tightly coordinated waters in the HOPC system that has a lower density of Na+ ions. Based on these observations we conclude that an ether-linked lipid bilayer has a lower binding affinity for Na+ compared to an ester-linked lipid bilayer.  相似文献   

20.
Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号