首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sebacinoid ectomycorrhizae on Chinese pine   总被引:1,自引:0,他引:1  
Sebacinoid fungi show a broad mycorrhizal capacity; therefore, they play a very important role in natural systems. Worldwide, fungi of Sebacinales are present under different environmental conditions and associate with diverse plant hosts, however, are hitherto poorly studied in China. Two sebacinoid ectomycorrhizae (ECM), Pinirhiza multifurcata and Pinirhiza nondextrinoidea, are described in detail morphologically and anatomically in the present study. They share a plectenchymatous outer mantle with multiply ramified hyphae in a gelatinous matrix, clampless, thin, thick-walled emanating hyphae with mostly Y-shaped ramifications and triangular inflations at the point of ramification. P. multifurcata and P. nondextrinoidea can be distinguished by thick cells in mantle layers, the ramification of emanating hyphae, the presence or absence of rhizomorphs, as well as the differing color reaction in Melzer's reagent. The putative molecular phylogenetic relationships of P. multifurcata and P. nondextrinoidea were inferred by analyses of the partial large subunit nuclear rDNA (nLSU); however, an affiliation to fungal species was not possible. This is the first report of sebacinoid ECM on Chinese pine.  相似文献   

2.
Fungal relationships and structural identity of their ectomycorrhizae   总被引:3,自引:0,他引:3  
Aproximately 5,000–6,000 fungal species form ectomyorrhizae (ECM), the symbiotic organs with roots of predominantly trees. The contributing fungi are not evenly distributed over the system of fungi. Within Basidiomycota exclusively Hymenomycetes and within Ascomycota exclusively Ascomycetes contribute to the symbiosis. Hymenomycetes play a big part, Ascomycetes a minor role; Zygomycetes only form exceptionally ECM. Responsible for ascomycetous ECM are mostly Pezizales with their hypogeous derivatives, whereas Boletales, Gomphales, Thelephorales, Amanitaceae, Cantharellaceae, Cortinariaceae, Russulaceae, and Tricholomataceae are the most important ectomycorrhizal relationships within Hymenomycetes. ECM, as transmitting organs between soil and roots, are transporting carbohydrates for growth of mycelium and fruitbodies from roots and have to satisfy the tree’s demand for water and nutrients. The latter task particularly influences the structure of ECM as nutrients are patchily distributed in the soil and saprotrophic as well as ectomycorrhizal fungi can act as strong competitors for nutrients. In focusing these requirements, ECM developed variously structured hyphal sheaths around the roots, the so-called mantles, and differently organized mycelium that emanates from the mantle, the so-called extramatrical mycelium. The mantles can be plectenchymatous consisting of loosely woven, differently arranged hyphae or they are densely packed, forming a pseudoparenchyma similar to the epidermis of leaves. The extramatrical mycelium grows either as simple scattered hyphae from the mantle into the soil or it can be united to undifferentiated rhizomorphs with a small reach or to highly organized root-like organs with vessel-like hyphae for efficient water and nutrient transport from distances of decimeters. Cystidia, sterile and variously shaped hyphal ends, possibly appropriate for preventing animal attack, in addition, can cover mantles and rhizomorphs. Although only a limited number of species could be considered, some general conclusions are possible.The genus Tuber forms needle-shaped cystidia and lacks rhizomorphs and clamps. Gomphales ECM are identified by rhizomorphs with ampullate inflations at septa of some hyphae and by oleoacanthocystidia or/and oleoacanthohyphae. Thelephoraceae reveal a great diversity of mantle structures and of extramatrical mycelium, with some additional optional characters, i.e., dark brown color, cystidia, blue granules, amyloid hyphae, or amyloid septa. Bankeraceae are mostly characterized by plectenchymatous mantles with star-like pattern and chlamydospores. Russulaceae possess smooth and hydrophilic ECM. Russula forms plectenchymatous mantles with knob-bearing cystidia, so-called russuloid cystidia, or pseudoparenchymatous mantles without cystidia. Lactarius lacks cystidia and shows laticifers within plectenchymatous or within pseudoparenchymatous mantles. The Boletales families Boletaceae, Gyroporaceae, Melanogastraceae, Paxillaceae, Rhizopogonaceae, Sclerodermataceae, and Suillaceae have the most advanced rhizomorph type, the so-called boletoid rhizomorphs, and reveal generally plectenchymatous mantles, frequently with ring-like patterns. Gomphidiaceae and Albatrellaceae provide cystidia, plectenchymatous mantles, and amyloidy; Gomphidiaceae are generally growing in ECM of Suillaceae and Rhizopogonaceae. Cortinariaceae reveal plectenchymatous mantles and undifferentiated or differentiated rhizomorphs or lack rhizomorphs at all. Cortinarius and Dermocybe are distinct by irregularly shaped, bent to tortuous ECM with many rhizomorphs, some growing over the mycorrhizal tip into the soil. Inocybe lacks rhizomorphs and its emanating hyphae are furnished by many secondary septa and prominent clamps with a hole. Rozites lacks rhizomorphs, too, and reveals a distinctly amyloid gelatinous mantle matrix. Descolea and Descomyces are covered by bolbitioid cystidia. Lastly, the genus Tricholoma forms plectenchymatous mantles and a high diversity of rhizomorphs. Some of the ectomycorrhizal features are used to hypothesize relationships at different taxonomic levels. These conclusions are compared with recently developed molecular hypotheses. Correspondence between the two types of hypotheses are evident, while some conflicts wait for a settlement.  相似文献   

3.
Endophytic fungi are known to be commonly associated with herbaceous plants, however, there are few studies focusing on their occurrence and distribution in plant roots from ecosystems with different land uses. To explore the phylogenetic diversity and community structure of Sebacinales endophytes from agricultural and grassland habitats under different land uses, we analysed the roots of herbaceous plants using strain isolation, polymerase chain reaction (PCR), transmission electron microscopy (TEM) and co-cultivation experiments. A new sebacinoid strain named Serendipita herbamans belonging to Sebacinales group B was isolated from the roots of Bistorta vivipara, which is characterized by colourless monilioid cells (chlamydospores) that become yellow with age. This species was very common and widely distributed in association with a broad spectrum of herbaceous plant families in diverse habitats, independent of land use type. Ultrastructurally, the presence of S. herbamans was detected in the cortical cells of Plantago media, Potentilla anserina and Triticum aestivum. In addition, 13 few frequent molecular operational taxonomic units (MOTUs) or species were found across agricultural and grassland habitats, which did not exhibit a distinctive phylogenetic structure. Laboratory-based assays indicate that S. herbamans has the ability to colonize fine roots and stimulate plant growth. Although endophytic Sebacinales are widely distributed across agricultural and grassland habitats, TEM and nested PCR analyses reinforce the observation that these microorganisms are present in low quantity in plant roots, with no evidence of host specificity.  相似文献   

4.
Mycorrhizas of vascular plants and mycorrhiza-like associations of liverworts and hornworts are integral parts of terrestrial ecosystems, but have rarely been studied in tropical mountain rain forests. The tropical mountain rain forest area of the Reserva Biológica San Francisco in South Ecuador situated on the eastern slope of the Cordillera El Consuelo is exceptionally rich in tree species, ericads and orchids, but also in liverworts. Previous light and electron microscopical studies revealed that tree roots are well colonized by structurally diverse Glomeromycota, and that epiphytic, pleurothallid orchids form mycorrhizas with members of the Tulasnellales and the Sebacinales (Basidiomycota). Sebacinales also occurred in mycorrhizas of hemiepiphytic ericads and Tulasnellales were found in liverworts belonging to the Aneuraceae. On the basis of these findings, we hypothesized that symbiotic fungi with a broad host range created shared guilds or even fungal networks between different plant species and plant families. To test this hypothesis, molecular phylogenetic studies of the fungi associated with roots and thalli were carried out using sequences of the nuclear rDNA coding for the small subunit rRNA (nucSSU) of Glomeromycota and the large subunit rRNA (nucLSU) of Basidiomycota. Sequence analyses showed that Sebacinales and Tulasnellales were only shared within but not between ericads and orchids or between liverworts and orchids, respectively. Regarding arbuscular-mycorrhiza-forming trees, however, 18 out of 33 Glomus sequence types were shared by two to four tree species belonging to distinct families. Nearly all investigated trees shared one sequence type with another tree individual. Host range and potential shared guilds appeared to be restricted to the plant family level for Basidiomycota, but were covering diverse plant families in case of Glomeromycota. Given that the sequence types as defined here correspond to fungal species, our findings indicate potential fungal networks between trees.  相似文献   

5.
《Mycoscience》2020,61(6):293-306
We described the ectomycorrhizae (ECM) of the Japanese Lactarius section Deliciosi species L. akahatsu, L. hatsudake, L. laeticolor, and L. subindigo with the aim of promoting the use of mycorrhizae for taxonomy and expansion of available cultures. Lactarius tottoriensis (sect. Lactarius) was also included as a comparator. The ECM of the four species of sect. Deliciosi showed orange laticifers and plectenchymatous mantles, whereas those of L. tottoriensis showed white laticifers and pseudoparenchymatous mantles. The ECM of L. hatsudake and L. subindigo showed complex rhizomorphs with thicker walls and more developed vessel-like hyphae compared to the other three species. Cystidium-like cells were rarely found on the mantles of L. laeticolor and L. subindigo. Fungal cultures of the five Lactarius species from their ECM were morphologically characterized. Cultures produced laticifers on agar medium, but the five species showed different growth rates. Rhizomorphs of L. hatsudake and L. subindigo in cultures showed a similar morphology to their ECM. Molecular phylogenetic analyses of cultures from the ECM demonstrated that they were of the targeted Lactarius species and suggested the need for taxonomic studies of L. hatsudake, L. subindigo, and L. tottoriensis at the species and section levels.  相似文献   

6.
The ectomycorrhizal status of Sistotrema sp. is shown by morphological–anatomical and molecular identification, confirming earlier reports about Sistotrema DNA in ectomycorrhizae (ECM). For molecular identification of the ECM nuclear rDNA ITS sequences obtained from mycorrhizal root tips and fruitbodies of Sistotrema sp. were compared. Blast searches using the Sistotrema sp. sequences as query were performed in GenBank and UNITE for comparison with previously published Sistotrema sequences. The morphological–anatomical characterization of the ECM used well-established protocols for the examination of all mantle parts and rhizomorphs in different sections and views including detailed illustrations. The ECM are irregularly monopodial–pyramidal, whitish ochre to yellow ochre, and woolly. Older ones become more greyish and silvery at some patches. Diagnostic anatomical characteristics are irregularly inflated emanating and rhizomorph hyphae, ampullately inflated clamps, and the occurrence of yellow drops within the hyphae. The plectenchymatous mantle shows ring-like arranged hyphae, and a slightly gelatinous matrix. The ECM of Sistotrema sp. are compared to those of other species that form distinctly ampullate hyphae in rhizomorphs, too. The anatomically most similar ECM to those of this Sistotrema specimen are those of Hydnum repandum.  相似文献   

7.
Nitrogen isotope values (δ15N) are higher in ectomycorrhizal fungi than in their plant hosts but the wide variability in δ15N among sporocarps of different fungal taxa is unexplained. We propose that fungal δ15N reflects sequestration of fungal nitrogen to build fungal biomass, and should accordingly reflect fungal exploration strategies and hyphal properties. To test this, we compared δ15N to exploration types, hyphal hydrophobicity, and the presence of rhizomorphs in ectomycorrhizal species from surveys at four sites in temperate and boreal coniferous forests. Fungi with exploration types of high biomass, such as long-distance (e.g., Suillus), medium-distance mat (e.g., Hydnellum), and medium-distance fringe (e.g., Cortinarius) were 4–7‰ more enriched in 15N than fungi with exploration types of low biomass [medium-distance smooth (e.g., Amanita), short-distance (e.g., Inocybe), and contact (e.g., Hygrophorus)]. High biomass types comprised 79% (Åheden, northern Sweden), 65% (Deer Park, Pacific Northwest, USA), 45% (Stadsskogen, central Sweden), and 39% (Hoh, Pacific Northwest, USA) of ectomycorrhizal species, with these types more prevalent at sites of lower nitrogen availability. Species with hydrophobic hyphae or with rhizomorphs were 3–4‰ more enriched in 15N than taxa with hydrophilic hyphae or without rhizomorphs. The consistency of these patterns suggest that δ15N measurements could provide insights into belowground functioning of poorly known taxa of ectomycorrhizal fungi and into relative fungal biomass across ectomycorrhizal communities.  相似文献   

8.
Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales.  相似文献   

9.
Yorou NS  Agerer R 《Mycologia》2008,100(1):68-80
A common resupinate thelephoroid fungus was collected in northern Guinean seasonal forests in central and north of Benin (West Africa). The species is reminiscent of Tomentella umbrinospora with respect to the color and thickness of basidiomata and rhizomorphs, the shape of basidiospores in frontal view and the size of subicular hyphae. Both species fall phylogenetically within two clades. Based on detailed anatomical comparison (mostly of rhizomorphs and basidiospores) with the holotype of T. umbrinospora and phylogenetic analyses including ITS rDNA sequences of 40 Tomentella species, T. africana is described as a new species. Genetic distance between the newly described species and T. umbrinospora is 12.1-12.9%, based on ITS rDNA sequences. T. africana is characterized anatomically by yellow-brown thick (0.3-0.8 mm) monomitic rhizomorphs that are commonly covered by irregularly shaped thin hyphae, thin- to thick-walled subicular hyphae of two size ranges, clavate and clamped basidia of 30-60 microm and light yellow to pale brown echinulate basidiospores with irregular shape in frontal view. Detailed anatomical and molecular dissimilarities between T. africana and close species are discussed. Differences between irregularly shaped surface thin hyphae and skeletal ones are highlighted. We stress the relevance of rhizomorphal structures in the discrimination of resupinate thelephoroid fungi.  相似文献   

10.
The leafy liverwort Lophozia excisa, which is colonised by basidiomycete fungi in other biomes and which evidence suggests may be colonised by mycorrhizal fungi in Antarctica, was sampled from Léonie Island in the southern maritime Antarctic (67°36′ S, 68°21′ W). Microscopic examination of plants indicated that fungal hyphae colonised 78% of the rhizoids of the liverwort, apparently by entering the tips of rhizoids prior to growing into their bases, where they formed hyphal coils. Extensive colonisation of stem medullary cells by hyphae was also observed. DNA was extracted from surface-sterilised liverwort tissues and sequenced following nested PCR, using the primer set ITS1F/TW14, followed by a second round of amplification using the ITSSeb3/TW13 primer set. Neighbour-joining analyses showed that the sequences obtained nested in Sebacinales clade B as a 100% supported sister group to Sebacinales sequences from the leafy liverworts Lophozia sudetica, L. incisa and Calypogeia muelleriana sampled from Europe. Direct PCR using the fungal specific primer set ITS1F/ITS4 similarly identified fungi belonging to Sebacinales clade B as the principal colonists of L. excisa tissues. These observations indicate the presence of a second mycothallus in Antarctica and support the previous suggestion that the Sebacinales has a wide geographical distribution.  相似文献   

11.
Fungal mutualisms are essential for the evolution and diversification of Orchidaceae, yet the fungal symbionts of Pleione orchids are poorly understood because molecular data are unavailable for this genus. Based on ITS-rDNA sequencing for mycobionts of 15 Pleione species (both wild and cultivated plants were included), we conducted phylogenetic analyses for the most dominant mycobionts, and compared the operational taxonomic units (OTUs) of mycorrhizal fungi among species within Pleione. Tulasnellaceae, Ceratobasidiaceae, Serendipitaceae (Sebacinales), Atractiellales, and Auriculariales were reported as putative mycobionts of Pleione. In particular, the mycorrhizal associations between subtropical orchids and Atractiellales have not been observed before. For the dominant mycobionts in the roots of Pleione and its related genera, Bletilla and Coelogyne, we detected no fungal OTU that was shared. Within Pleione, species with a sympatric distribution showed preferences for different fungi. Epiphytic and lithophytic individuals of Pleione albiflora shared OTUs of Tulasnellaceae but harbored different OTUs of Sebacinales, indicating some degree of fungal specificity toward certain habitats. These findings provide new insights into the ecological adaptation and evolution of orchids, and will contribute to the conservation and utilization of species resources.  相似文献   

12.
Sebacinales are basal Hymenomycetes with diverse mycorrhizal abilities, ranging from ectomycorrhizae to ericoid and orchid mycorrhizae. Several previous PCR or isolation works raised the possibility that Sebacinales are endophytes in plant roots. We tested this hypothesis in an isolation-independent approach by using specific PCR primers for ribosomal DNA of Sebacinales on AM mycorrhizal or non-mycorrhizal roots. Thirty-nine plant species were sampled on a Caribbean and two European sites (3 repetition per species and site), covering 25 families in monocots and eudicots. PCR signals were obtained from 40 samples (28.9 %) from 27 species (69.2 %) and all sites. Whenever sequencing was successful, a sequence belonging to Sebacinales was recovered. A phylogenetic approach revealed that 13 of them belonged to clade B (encompassing ericoid and orchid mycorrhizal species) and 4 to clade A (usually encompassing only ectomycorrhizal species). These data suggest that Sebacinales may be endophytic in many angiosperm roots, and that this condition is plesiomorphic in Sebacinales. They bridge the gap between physiological studies, inoculating Sebacinales (Piriformospora indica or Sebacina vermifera) on diverse plants and molecular ecology, hitherto restricting Sebacinales to mycorrhizal interactions. Structural and functional aspects of the interaction deserve further studies.  相似文献   

13.
A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H 2?=?0.04?0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H 2?=?0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.  相似文献   

14.
15.
Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant–fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant–mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant–fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant–fungal associations. Such insights into the overall structure of belowground plant–fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species in natural communities.  相似文献   

16.
The fungal communities associated with three bryophytes species (the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata) in the Fildes Region, King George Island, maritime Antarctica, were studied using clone library analysis. Fungal communities showed low diversity; the 680 clones belonged to 93 OTUs. Of these, 78 belonged to the phylum Ascomycota, 13 to the phylum Basidiomycota, 1 to the phylum Zygomycota, and 1 to an unknown phylum. Among the OTUs, the most common orders in the Ascomycota were Helotiales (42 OTUs) and Chaetothyriales (14 OTUs) and the most common orders in the Basidiomycota were Sebacinales (3 OTUs) and Platygloeales (3 OTUs). Most OTUs clustered within clades that contained phylotypes identified from samples in Antarctic or Arctic ecosystems or from bryophytes in other ecosystems. In addition, we found that host-related factor may shape the fungal communities associated with bryophytes in this region. This is the first systematic study of the fungal community in Antarctic bryophytes to be performed using culture-independent method and the results may improve understanding of the endophytic fungal evolution and ecology in the Antarctic ecosystem.  相似文献   

17.
Bistorta vivipara is a widespread arctic-alpine ectomycorrhizal (ECM) plant species. Recent findings suggest that fungal communities associated with B. vivipara roots appear random over short distances, but at larger scales, environmental filtering structure fungal communities. Habitats in highly stressful environments where specialist species with narrower niches may have an advantage represent unique opportunity to test the effect of environmental filtering. We utilised high-throughput amplicon sequencing to identify ECM communities associated with B. vivipara in Svalbard. We compared ECM communities in a core habitat where B. vivipara is frequent (Dryas-heath) with edge habitats representing extremes in terms of nutrient availability where B. vivipara is less frequent (bird-manured meadow and a nutrient-depleted mine tilling). Our analysis revealed that soil conditions in edge habitats favour less diverse but more distinct ECM fungal communities with functional traits adapted to local conditions. ECM richness was overall lower in both edge habitats, and the taxonomic compositions of ECM fungi were in line with our functional expectations. Stress-tolerant genera such as Laccaria and Hebeloma were abundant in nutrient-poor mine site whereas functional competitors genera such as Lactarius and Russula were dominant in the nutrient-rich bird-cliff site. Our results suggest that ECM communities in rare edge habitats are most likely not subsets of the larger pool of ECM fungi found in natural tundra, and they may represent a significant contribution to the overall diversity of ECM fungi in the Arctic.  相似文献   

18.
The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.  相似文献   

19.
On Vancouver Island, British Columbia, fertilization with nitrogen (N) and phosphorus (P) following clearcutting increases growth of western hemlock. To explore whether fertilization also resulted in ectomycorrhizal fungal communities that were more or less similar to neighboring unlogged stands, we sampled roots from western hemlock from three replicate plots from each of five different, well-characterized, forest stand types that differed in site type, and in logging and fertilization history. We harvested four samples of 100 ectomycorrhizal root tips from each plot, a total of 60 samples per stand type. From each sample, we analyzed fungal ribosomal internal transcribed spacers and 28S DNA, sequencing 15–29 clones per sample and 60–116 clones per plot. We detected 147 fungal operational taxonomic units among a total of 1435 sequences. Craterellus tubaeformis was frequently present and resulted in a pattern of phylogenetic overdispersion in the fungal communities. Fungal species composition was strongly correlated with foliar nitrogen concentration. However, other site quality factors were also important because the fertilized regenerating hemlock and mature hemlock-amabilis fir forests had similar foliar nitrogen content but little overlap in fungal species. Compared with unfertilized regenerating forests, fungal communities in N?+?P-fertilized regenerating forests had significantly more species overlap with old growth forests. However, the fungal communities of all regenerating forest were similar to one another and all differed significantly from older forests. By correlating fungal clades with habitats, this research improves understanding of how forest management can contribute to maintaining diverse ectomycorrhizal fungal communities across a landscape.  相似文献   

20.
About half the root-like structures found in the litter of a Pinus murrayana forest were found to be in reality rhizomorphs of fungi. Conclusions based on direct observations of the soil are reinforced with culture experiments with litter in the greenhouse. Microscopic studies show a distinct structure of these rhizomorphs which distinguishes them from roots. Covered with a tight network of hyphae, they have very wide hyphae in their centers, which are named tracheodes in this paper. Although fungal rhizomorphs are well known in connection with fruiting bodies of mushrooms, the rhizomorphs in montane forest and desert occur apart from fruiting bodies and thus far have not been connected with any known mushrooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号