首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic analyses have identified positive selection as an important driver of protein evolution, both structural and functional. However, the lack of appropriate combined functional and structural assays has generally hindered attempts to elucidate patterns of positively selected sites and their effects on enzyme activity and substrate specificity. In this study we investigated the evolutionary divergence of the glutathione S-transferase (GST) family in Pinus tabuliformis, a pine that is widely distributed from northern to central China, including cold temperate and drought-stressed regions. GSTs play important roles in plant stress tolerance and detoxification. We cloned 44 GST genes from P. tabuliformis and found that 26 of the 44 belong to the largest (Tau) class of GSTs and are differentially expressed across tissues and developmental stages. Substitution models identified five positively selected sites in the Tau GSTs. To examine the functional significance of these positively selected sites, we applied protein structural modeling and site-directed mutagenesis. We found that four of the five positively selected sites significantly affect the enzyme activity and specificity; thus their variation broadens the GST family substrate spectrum. In addition, positive selection has mainly acted on secondary substrate binding sites or sites close to (but not directly at) the primary substrate binding site; thus their variation enables the acquisition of new catalytic functions without compromising the protein primary biochemical properties. Our study sheds light on selective aspects of the functional and structural divergence of the GST family in pine and other organisms.  相似文献   

2.
3.
Human DHRS2 and DHRS4 genes code for similar NADP-dependent short-chain carbonyl-reductase enzymes having different substrate specificity. Human DHRS2 and DHRS4 enzymes share several common sequence motives including residues responsible for coenzyme binding as well as for the intimate catalytic oxido-reductase mechanism, while their substrate-binding sequences have very low similarity. We found that DHRS2 and DHRS4 genes are syntenic outparalogues originated from a duplication of the DHRS4 gene that took place before the formation of the mammalian clade. DHRS2 gene evolved more rapidly and underwent positive selection on more sites than the DHRS4 gene. DHRS2 sites under positive selection were mainly located on the enzyme active site thus showing that substrate specificity drove the divergence from the DHRS4 enzyme. Rapid divergent evolution brought the human DHRS2 enzyme to have subcellular localization, synthesis regulation and specialized cellular functions very different from those of the human DHRS4 enzyme.  相似文献   

4.
5.
Brucella is a facultative intracellular bacterium belongs to the class alpha proteobacteria. It causes zoonotic disease brucellosis to wide range of animals. Brucella species are highly conserved in nucleotide level. Here, we employed a comparative genomics approach to examine the role of homologous recombination and positive selection in the evolution of Brucella. For the analysis, we have selected 19 complete genomes from 8 species of Brucella. Among the 1599 core genome predicted, 24 genes were showing signals of recombination but no significant breakpoint was found. The analysis revealed that recombination events are less frequent and the impact of recombination occurred is negligible on the evolution of Brucella. This leads to the view that Brucella is clonally evolved. On other hand, 56 genes (3.5 % of core genome) were showing signals of positive selection. Results suggest that natural selection plays an important role in the evolution of Brucella. Some of the genes that are responsible for the pathogenesis of Brucella were found positively selected, presumably due to their role in avoidance of the host immune system.  相似文献   

6.
Hou ZC  Xu GY  Su Z  Yang N 《Gene》2007,396(1):188-195
The myxovirus resistance gene (Mx) expresses antiviral activity in many species, e.g. mouse, human and chicken. It is not clear if the antiviral activity of Mx has evolved in these species to inhibit a set of species-specific pathogens, nor what factors drive Mx evolution in different animal lineages. Therefore, it is important to determine the evolutionary pattern of Mx and positively selected sites which affect the antiviral activity of the Mx gene in mammals and birds. We used sequence comparisons among species to detect positively selected sites by conducting phylogenetic analysis. The two-ratio model was significantly better than the one-ratio model in four species (mouse, rat, chicken and duck, p<0.05). Although selection pressure varied among different lineages, Mx had strong purifying selection in mammals and positive selection in chicken and duck lineages. Relative rate test revealed that Mx evolved faster in chickens than in ducks (Tajima's relative rate test, chi(2)=7.17, p<0.01). In the further analysis using a branch-site model A test, 8 sites were positively selected in the chicken lineage while no positive selection signals were observed for any site in the other lineages. The branch-site model A test had a omega value of 4.374 for the chicken lineage (2Deltal=14.20, d.f.=1, p<0.001). Comparisons of all currently available Mx mRNA sequences showed that these predicted positively selected sites had been fixed in the chicken lineage, suggesting that the chicken Mx gene evolved within the species to resist newly challenging environments. There is an increased selection constraint leading to mammals, while positive selection has acted on the chicken Mx.  相似文献   

7.
Previous studies on Arabidopsis thaliana and other model plants have indicated that the development of a flower is controlled by a regulatory network composed of genes and the interactions among them.Studies on the evolution of this network will therefore help understand the genetic basis that underlies flower evolution.In this study,by reviewing the most recent published work,we added 31 genes into the previously proposed regulatory network for flower development.Thus,the number of genes reached 60.We then compared the composition,structure,and evolutionary rate of these genes between A.thaliana and one of its allies,A.lyrata.We found that two genes (FLC and MAF2) show 1∶ 2 and 2∶ 2 relationships between the two species,suggesting that they have experienced independent,post-speciation duplications.Of the remaining 58 genes,35 (60.3%) have diverged in exon-intron structure and,consequently,code for proteins with different sequence features and functions.Molecular evolutionary analyses further revealed that,although most floral genes have evolved under strong purifying selection,some have evolved under relaxed or changed constraints,as evidenced by the elevation of nonsynonymous substitution rates and/or the presence of positively selected sites.Taken together,these results suggest that the regulatory network for flower development has evolved rather rapidly,with changes in the composition,structure,and functional constraint of genes,as well as the interactions among them,being the most important contributors.  相似文献   

8.
The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP) pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones) and allowed identification of positive selection events in the human lineage.We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin). Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes. Thus, we used evolutionary information to generate experimentally-testable hypotheses and to provide a list of sites to prioritize in follow-up analyses.  相似文献   

9.
Plant cell wall degrading enzymes (PCWDEs) of plant pathogens are receiving increasing interest for their potential to trigger plant defense reactions. In an antagonistic co-evolutionary arms race between host and pathogen, PCWDEs could be under strong selection. Here, we tested the hypothesis that PCWDEs in the fungal wheat pathogen Mycosphaerella graminicola have been positively selected by analyzing ratios of non-synonymous and synonymous nucleotide changes in the genes encoding these enzymes. Analyses of five PCWDEs demonstrated that one (β-xylosidase) has been under strong positive selection and experienced an accelerated rate of evolution. In contrast, PCWDEs in the closest relatives of M. graminicola collected from wild grasses did not show evidence for selection or deviation from a molecular clock. Since the genealogical divergence of M. graminicola from these latter species coincided with the onset of agriculture, we hypothesize that the recent domestication of the host plant and/or agricultural practices triggered positive selection in β-xylosidase and that this enzyme played a key role in the emergence of a host-specialized pathogen.  相似文献   

10.
11.
《Genomics》2020,112(5):2922-2927
The emergence of a coordinated network of cognitive and speech genes in the human lineage performing overlapping functions is a great evolutionary puzzle. Prior studies on the speech gene FOXP2 are inconclusive on the nature of selection operating on this gene in the human lineage. Here, I show that the evolution of FOXP2 is accelerated in the human lineage due to relaxation of purifying selection (relaxed selection). Five potential genes associated with human-specific intelligence and speech genes have evolved under the impact of positive selection and three genes including FOXP2 have undergone relaxation of purifying selection in the human lineage. Overall, three evolutionary processes namely positive selection, relaxation of purifying selection and neutral evolution have contributed for the genomic evolution of extraordinary cognitive ability and speech in the hominin lineage. The cognitive and speech genes subjected to natural selection in the human lineage have demonstrated a coevolutionary trend.  相似文献   

12.
13.
Molecular adaptation, as characterized by the detection of positive selection, was quantified in a number of genes from different human immunodeficiency virus type 1 (HIV-1) group M subtypes, group O, and an HIV-2 subtype using the codon-based maximum-likelihood method of Yang and coworkers (Z. H. Yang, R. Nielsen, N. Goldman, and A. M. K. Pedersen, Genetics 155:431-449, 2000). The env gene was investigated further since it exhibited the strongest signal for positive selection compared to those of the other two major HIV genes (gag and pol). In order to investigate the pattern of adaptive evolution across env, the location and strength of positive selection in different HIV-1 sequence alignments was compared. The number of sites having a significant probability of being positively selected varied among these different alignment data sets, ranging from 25 in HIV-1 group M subtype A to 40 in HIV-1 group O. Strikingly, there was a significant tendency for positively selected sites to be located at the same position in different HIV-1 alignments, ranging from 10 to 16 shared sites for the group M intersubtype comparisons and from 6 to 8 for the group O to M comparisons, suggesting that all HIV-1 variants are subject to similar selective forces. As the host immune response is believed to be the dominant driving force of adaptive evolution in HIV, this result would suggest that the same sites are contributing to viral persistence in diverse HIV infections. Thus, the positions of the positively selected sites were investigated in reference to the inferred locations of different epitope types (antibody, T helper, and cytotoxic T lymphocytes) and the positions of N and O glycosylation sites. We found a significant tendency for positively selected sites to fall outside T-helper epitopes and for positively selected sites to be strongly associated with N glycosylation sites.  相似文献   

14.
Thiol/selenol peroxidases are ubiquitous nonheme peroxidases. They are divided into two major subfamilies: peroxiredoxins (PRXs) and glutathione peroxidases (GPXs). PRXs are present in diverse subcellular compartments and divided into four types: 2-cys PRX, 1-cys PRX, PRX-Q, and type II PRX (PRXII). In mammals, most GPXs are selenoenzymes containing a highly reactive selenocysteine in their active site while yeast and land plants are devoid of selenoproteins but contain nonselenium GPXs. The presence of a chloroplastic 2-cys PRX, a nonselenium GPX, and two selenium-dependent GPXs has been reported in the unicellular green alga Chlamydomonas reinhardtii. The availability of the Chlamydomonas genome sequence offers the opportunity to complete our knowledge on thiol/selenol peroxidases in this organism. In this article, Chlamydomonas PRX and GPX families are presented and compared to their counterparts in Arabidopsis, human, yeast, and Synechocystis sp. A summary of the current knowledge on each family of peroxidases, especially in photosynthetic organisms, phylogenetic analyses, and investigations of the putative subcellular localization of each protein and its relative expression level, on the basis of EST data, are presented. We show that Chlamydomonas PRX and GPX families share some similarities with other photosynthetic organisms but also with human cells. The data are discussed in view of recent results suggesting that these enzymes are important scavengers of reactive oxygen species (ROS) and reactive nitrogen species (RNS) but also play a role in ROS signaling.  相似文献   

15.
Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ∼2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes.  相似文献   

16.
Millions of years of coevolution between plants and pathogens can leave footprints on their genomes and genes involved on this interaction are expected to show patterns of positive selection in which novel, beneficial alleles are rapidly fixed within the population. Using information about upregulated genes in maize during Colletotrichum graminicola infection and resources available in the Phytozome database, we looked for evidence of positive selection in the Poaceae lineage, acting on protein coding sequences related with plant defense. We found six genes with evidence of positive selection and another eight with sites showing episodic selection. Some of them have already been described as evolving under positive selection, but others are reported here for the first time including genes encoding isocitrate lyase, dehydrogenases, a multidrug transporter, a protein containing a putative leucine-rich repeat and other proteins with unknown functions. Mapping positively selected residues onto the predicted 3-D structure of proteins showed that most of them are located on the surface, where proteins are in contact with other molecules. We present here a set of Poaceae genes that are likely to be involved in plant defense mechanisms and have evidence of positive selection. These genes are excellent candidates for future functional validation.  相似文献   

17.
18.
Pervasive adaptive evolution in primate seminal proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Seminal fluid proteins show striking effects on reproduction, involving manipulation of female behavior and physiology, mechanisms of sperm competition, and pathogen defense. Strong adaptive pressures are expected for such manifestations of sexual selection and host defense, but the extent of positive selection in seminal fluid proteins from divergent taxa is unknown. We identified adaptive evolution in primate seminal proteins using genomic resources in a tissue-specific study. We found extensive signatures of positive selection when comparing 161 human seminal fluid proteins and 2,858 prostate-expressed genes to those in chimpanzee. Seven of eight outstanding genes yielded statistically significant evidence of positive selection when analyzed in divergent primates. Functional clues were gained through divergent analysis, including several cases of species-specific loss of function in copulatory plug genes, and statistically significant spatial clustering of positively selected sites near the active site of kallikrein 2. This study reveals previously unidentified positive selection in seven primate seminal proteins, and when considered with findings in Drosophila, indicates that extensive positive selection is found in seminal fluid across divergent taxonomic groups.  相似文献   

19.
Abstract Previous studies on Arabidopsis thaliana and other model plants have indicated that the development of a flower is controlled by a regulatory network composed of genes and the interactions among them. Studies on the evolution of this network will therefore help understand the genetic basis that underlies flower evolution. In this study, by reviewing the most recent published work, we added 31 genes into the previously proposed regulatory network for flower development. Thus, the number of genes reached 60. We then compared the composition, structure, and evolutionary rate of these genes between A. thaliana and one of its allies, A. lyrata. We found that two genes (FLC and MAF2) show 1: 2 and 2: 2 relationships between the two species, suggesting that they have experienced independent, post‐speciation duplications. Of the remaining 58 genes, 35 (60.3%) have diverged in exon–intron structure and, consequently, code for proteins with different sequence features and functions. Molecular evolutionary analyses further revealed that, although most floral genes have evolved under strong purifying selection, some have evolved under relaxed or changed constraints, as evidenced by the elevation of nonsynonymous substitution rates and/or the presence of positively selected sites. Taken together, these results suggest that the regulatory network for flower development has evolved rather rapidly, with changes in the composition, structure, and functional constraint of genes, as well as the interactions among them, being the most important contributors.  相似文献   

20.
Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA), a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号