首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The supravital, mitochondrial specific dye Rhodamine 123 (R123) was used in conjunction with three monoclonal antibodies to isolate a population of human bone marrow (BM) cells enriched for hematopoietic progenitor cells. BM cells stained with phycoerythrin-HLA-DR, Texas red-CD34, allophycocyanin-CD15, and R123 were fractionated using four-color immunofluorescence cell sorting. Cells expressing CD34 but not HLA-DR and CD15 (CD34+ HLA-DR- CD15-) were subdivided according to their reactivity with R123 into quiescent, R123 dull (R+) or cycling, R123 bright (R++) subpopulations. Morphological analysis and hematopoietic progenitor cell assays indicated that CD34+ HLA-DR- CD15- R+ cells contained larger numbers of blast cells and colony forming units than CD34+ HLA-DR- CD15- R++ cells. The flow cytometer settings used to accommodate the detection of the R123 fluorescence in combination with that of three other fluorochromes are described.  相似文献   

2.
BACKGROUND: In peripheral blood, myeloid markers identify a heterogeneous mixture of cells in transit from the bone marrow to peripheral tissues. Similarly, HLA-class II DR expression usually identifies mononuclear cells with the potential for developing antigen-presenting activity. We gathered putative antigen presenting cells bearing myeloid markers (My-APC) to study their composition by cell surface phenotype. METHODS: To gather and dissect My-APC phenotype while excluding lymphocytes and granulocytes, we developed a strategy based on staining red cell-lysed peripheral blood and gating cells bearing myeloid markers and physical parameters of large mononuclear cells. RESULTS: Phenotypic analysis within the My-APC gate showed three distinct populations. The largest fraction was constituted by CD14+ monocytes that extended into the other two populations, each expressing gradually lower levels of CD14 surface antigen along with increasing levels of CD16 and CD2, respectively. The CD16 and CD2 expression patterns extended from CD16+CD14+ or CD2+CD14+ double- positive intermediate cells toward each single positive subset, but they were reciprocally exclusive. Interestingly, CD2+CD14- cells within the My-APC gate were equivalent to myeloid dendritic cell precursors (pre-DC) defined previously by the absence of lineage markers and expression of HLA-DR and myeloid markers. Phenotypic analysis of each population revealed differences in the expression of costimulatory molecules and CD62L. CONCLUSIONS: This novel analytical approach allowed us to distinguish circulating My-APC in three subsets and to identify relationships between monocytes and other related myeloid populations including DC.  相似文献   

3.
Hematopoietic progenitor cells arising from bone marrow (BM) are known to contribute to the formation and expansion of tumor vasculature. However, whether different subsets of these cells have different roles in this process is unclear. To investigate the roles of BM-derived progenitor cell subpopulations in the formation of tumor vasculature in a Ewing's sarcoma model, we used a functional assay based on endothelial cell and pericyte differentiation in vivo. Fluorescence-activated cell sorting of human cord blood/BM or mouse BM from green fluorescent protein transgenic mice was used to isolate human CD34+/CD38(-), CD34+/CD45+, and CD34(-)/CD45+ cells and mouse Sca1+/Gr1+, Sca1(-)/Gr1+, VEGFR1+, and VEGFR2+ cells. Each of these progenitor subpopulations was separately injected intravenously into nude mice bearing Ewing's sarcoma tumors. Tumors were resected 1 week later and analyzed using immunohistochemistry and confocal microscopy for the presence of migrated progenitor cells expressing endothelial, pericyte, or inflammatory cell surface markers. We showed two distinct patterns of stem cell infiltration. Human CD34+/CD45+ and CD34+/CD38(-) and murine VEGFR2+ and Sca1+/Gr1+ cells migrated to Ewing's tumors, colocalized with the tumor vascular network, and differentiated into cells expressing either endothelial markers (mouse CD31 or human vascular endothelial cadherin) or the pericyte markers desmin and alpha-smooth muscle actin. By contrast, human CD34(-)/CD45+ and mouse Sca1(-)/Gr1+ cells migrated predominantly to sites outside of the tumor vasculature and differentiated into monocytes/macrophages expressing F4/80 or CD14. Our data indicate that only specific BM stem/progenitor subpopulations participate in Ewing's sarcoma tumor vasculogenesis.  相似文献   

4.

Background

A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC), lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations - beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC) have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE) as a novel strategy to successfully address this question.

Results

UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells.

Conclusion

Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the high proliferative capacity of these MSC-like cells as compared to whole primary culture or other UC-derived subpopulations. The accumulation of a self-renewing MSC-like subpopulation by CCE with low expression levels of the aging marker senescence-associated β-galactosidase provides a valuable tool in the regenerative medicine and an alternative to bone-marrow-derived MSC.  相似文献   

5.
6.
Bone marrow-derived mesenchymal stem cells consist of a developmentally heterogeneous population of cells obtained from colony forming progenitors. As these colonies express the alpha-1 integrin (CD49a), here we single-cell FACS sorted CD49a+ cells from bone marrow in order to create clones and then compared their colony forming efficiency and multilineage differentiation capacity to the unsorted cells. Following selection, 40% of the sorted CD49a+ cells formed colonies, whereas parental cells failed to form colonies following limited dilution plating at 1 cell/well. Following ex vivo expansion, clones shared a similar morphology to the parental cell line, and also demonstrated enhanced proliferation. Further analysis by flow cytometry using a panel of multilineage markers demonstrated that the CD49a+ clones had enhanced expression of CD90 and CD105 compared to unsorted cells. Culturing cells in adipogenic, osteogenic or chondrogenic medium for 7, 10 and 15 days respectively and then analysing them by quantitative PCR demonstrated that CD49a+ clones readily underwent multlineage differentiation into fat, bone and cartilage compared to unsorted cells. These results thus support the use of CD49a selection for the enrichment of mesenchymal stem cells, and describes a strategy for selecting the most multipotential cells from a heterogeneous pool of bone marrow mononuclear stem cells.  相似文献   

7.
MSCs are a population of adult stem cells that is a promising source for therapeutic applications. These cells can be isolated from the bone marrow and can be easily separated from the hematopoietic stem cells (HSCs) due to their plastic adherence. This protocol describes how to isolate MSCs from rat femurs and tibias. The isolated cells were further enriched against two MSCs surface markers CD54 and CD90 by magnetic cell sorting. Expression of surface markers CD54 and CD90 were then confirmed by flow cytometry analysis. HSC marker CD45 was also included to check if the sorted MSCs were depleted of HSCs. MSCs are naturally quite heterogeneous. There are subpopulations of cells that have different shapes, proliferation and differentiation abilities. These subpopulations all express the known MSCs markers and no unique marker has yet been identified for the different subpopulations. Therefore, an alternative approach to separate out the different subpopulations is using cloning cylinders to separate out single-colony derived cells. The cells derived from the single-colonies can then be cultured and evaluated separately.Download video file.(94M, mp4)  相似文献   

8.
Analyses of B cells in the bone marrow and secondary lymphoid tissues have revealed a broad range of cell surface markers defining B cell subpopulations, but only a few of these have been used to analyze B cell subpopulations in peripheral blood (PB). We report here the delineation of circulating PB B cell subpopulations by staining for CD19, CD38, and IgD in combination with CD10, CD44, CD77, CD95, CD23, IgM, and the B cell memory marker CD27. The utility of this approach is shown by the demonstration of disturbances of circulating B cell subpopulations in patients with autoimmune disease. Five mature B cell (Bm) subpopulations were identified in normal PB that were comparable with the tonsillar Bm1, Bm2, early Bm5, Bm5 subpopulations and, surprisingly, to the germinal center (GC) founder cell subpopulation (Bm2' and Bm3delta-4delta), suggesting that some GC founder cells are circulating. No PB B cells resembled the Bm3 and Bm4 GC cells. Remarkably, some cells with the CD38-IgD+ phenotype, previously known as naive Bm1 cells, expressed CD27. The CD38-IgD+ subpopulation therefore includes both naive Bm1 cells and IgD+ memory B cells. This new classification of B cell developmental stages reveals disturbances in the proportions of B cell subpopulations in primary Sj?gren's syndrome (pSS) patients compared with healthy donors and rheumatoid arthritis patients. Patients with pSS contained a significantly higher percentage of B cells in two activated stages, which might reflect a disturbance in B cell trafficking and/or alteration in B cell differentiation. These findings could be of diagnostic significance for pSS.  相似文献   

9.
Flow cytometric separation was performed on the normal human bone marrow (BM) by using the low-angle (0 degrees) or high-angle (90 degrees) light scatter. Four distinct subpopulations of cells can be enriched from normal human BM and these fractions were subsequently evaluated for their morphological properties as well as their clonogenic capacity in various progenitor cell assays. Our results indicate that human erythroid and granulocyte-macrophage progenitor cells can be separated from BM low-density cells by cell sorting, and these cells show similar 0 degrees and 90 degrees light scatter properties to those observed with murine bone marrow studies. Flow cytometric analysis also suggests that the majority of sorted BFU-E and CFU-GM resides in the blast cell subset of human BM mononuclear cells.  相似文献   

10.
11.
The identification in murine bone marrow (BM) of very small embryonic-like (VSEL) stem cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the human umbilical cord blood (UCB). Here our approach to purify VSEL from human UCB is described by employing a two step isolation strategy based on i) hypotonic lysis of erythrocytes followed ii) by multi-parameter FACS sorting. Accordingly, first, erythrocytes are removed from the UCB samples by hypotonic ammonium chloride solution and next, the UCB mononuclear cells (UCB MNC) are stained with monoclonal antibodies against all hematopoietic lineages including the common leukocyte antigen CD45. The cells carrying these markers (lin+CD45+) are eliminated from the sort by electronic gating. At the same time the antibodies against CXCR4, CD34 and CD133 are employed as positive markers to enrich the UCB MNC for VSEL. This combined two step approach enables to purify VSEL stem cells, which are small and express mRNA for pluripotent stem cells (PSC) (Oct-4 and Nanog) and tissue-committed stem cells (TCSC) (Nkx2.5/Csx, VE-cadherin and GFAP) similarly to those isolated from the adult BM (3-5 microm cells with large nuclei).  相似文献   

12.
Human adipose-derived stem cell populations express cell surface markers such as CD105, CD73, CD146 and CD140a/PDFGRα. However, it was unclear whether these markers could discriminate subpopulations of undifferentiated cells and whether the expression of these markers is modulated during differentiation. To address this issue, we analysed the immunophenotype of cultured human multipotent adipose derived stem (hMADS) cell populations at different adipocyte differentiation steps. We found that 100% of undifferentiated cells expressed CD73 and CD105. In contrast, CD146 and CD140a/PDFGRα marked two different subpopulations of cells. CD140a/PDGFRα subpopulation was regulated by FGF2, a critical factor of human adipose-derived stem cell self-renewal. During differentiation, CD73 was maintained and marked lipid-laden cells, whereas CD105 expression was inhibited in fully differentiated cells. The percentage of CD146 and CD140a/PDFGRα-positive cells declined as soon as cells had undergone differentiation. Altogether, these data support the notion that expanded adipose-derived stem cells are heterogeneous mixtures of cells and cell surface markers studied can discriminate subpopulations.  相似文献   

13.
Bone marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacity and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146−/Low and CD146High cells under clonal conditions and after sorting of the non-clonal cell population to determine whether this expression is associated with specific functions. CD146−/Low and CD146High bone marrow MSCs did not differ in colony-forming unit-fibroblast number, osteogenic, adipogenic and chondrogenic differentiation or in vitro haematopoietic-supportive activity. However, CD146−/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment to a vascular smooth muscle cell (VSMC) lineage characterized by a strong up-regulation of calponin-1 and SM22α expression and an ability to contract collagen matrix. Thus, within a bone marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed towards a VSMC lineage.  相似文献   

14.
Mesenchymal stem cells (MSC) are able to transdifferentiate into cells with different functional phenotypes and considered as a promising resource for regenerative therapy. MSC derived from different tissues vary in their differentiation potential and in some cases express tissue specific markers indicating a kinship between mesenchymal and parenchymal phenotypes in the same tissue. It is possible that homorganic MSC can be more effectively induced to tissue specific differentiation and preferable for cell therapy of this organ as compared with bone marrow derived cells being commonly used for this purpose. Using bladder tissue explants, we prepared primary MSC cultures from the fetal (MSC-BF) and adult syngenic BALB/c mice and characterized their abilities during long-term passaging. In contrast to the cells from adult mice, the MSC-BF cells have the ability for a sustained growth in vitro, clonogenicity and differentiation into adipose and bone cells. Similar to the bone marrow MSC, MSC-BF express the mesenchymal markers CD29, CD44, CD49f, CD90, CD105 but not the leukocyte common antigen CD45. In normal conditions, MSC-BF produce such urothelial markers as CK14 and FOXA1 although their expression level is by far lower than in the bladder tissue. The hypomethylating agent, 5-azacytidine, induces in MSC-BF the expression of the urothelial differentiation activator PPARγ and the functional urothelium markers UP1a, UP1b, UP3a, UP3b. The data obtained suggest that MSC-BF can be epigenetically reprogrammed into urothelium by the 5-azacytidine treatment, and this may offer the novel strategy for cell therapy of bladder diseases.  相似文献   

15.

Background

Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients.

Results

In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA).

Conclusion

Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow, clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia.  相似文献   

16.
This paper describes the measurement of S phase DNA content in human bone marrow subpopulations using a single laser method for bivariate analysis of DNA content and cell-surface immunofluorescence (s-IF). Low density (less than 1.077 g/ml) bone marrow cells were labeled with a panel of unconjugated monoclonal antibodies (MoAb) for the lymphoid (CD2 + CD19), T-lymphoid (CD2), B-lymphoid (CD19), erythroid (anti-glycophorin-A), myelomonocytic (CD13, CD33; single and as cocktail) and monocytic (CD14) lineages. A fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse label was used as second step. Unfixed, MoAb-labeled cells were incubated for 24 h with a hypotonic propidium iodide solution for DNA staining. Cells were analysed on a single-laser flow cytometer, operating at 488 nm. The effect of the combined staining protocol upon both s-IF and DNA stainability was evaluated. Only a slight decrease (mean: 29.0%) in s-IF intensity was observed after DNA staining. The percentages of immunofluorescent cells in the bone marrow samples of 10 normal individuals before and after DNA staining were essentially unchanged for all the MoAbs used. The DNA histograms of the immunophenotypically defined subpopulations were of excellent quality with a mean coefficient or variation of 1.8%. This procedure allows the assessment of very low levels of S-phase DNA content, as measured in normal low density blood cells of 8 healthy volunteers (mean 0.07%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Multivariate analyses and list mode data processing were used to obtain cytokinetic information on flow cytometrically distinct hemopoietic subpopulations. In one application, viable, unfixed hemopoietic subpopulations were discriminated on the basis of cyanine dye fluorescence and orthogonal light scatter; Hoechst dye fluorescence was measured to determine the proliferative status of the subpopulations. In another application, ethanol-fixed mouse bone marrow cells were triply stained with Hoechst dye, rhodamine-conjugated wheat germ agglutinin (WGA), and a fluorescein-labeled monoclonal antibody against bromodeoxyuridine. In both of these studies, flow cytometric data for all three variables were acquired in list mode fashion, stored on magnetic tape, and processed by list mode software on a computer-based multivariable pulse-height analyzer. In the first application, subpopulations distinguished by cyanine dye intensity and light scatter appeared to be more related to cell lineage and cell size than proliferative status. In the second application, WGA affinity discriminated two subpopulations in mouse bone marrow S-phase cells in each subpopulation that actively incorporated bromodeoxyuridine (BrdUrd). List mode data processing obviates the need for routine electronic sorting of cells and thus facilitates characterization of discriminated subpopulations. In this regard, it is particularly useful for the study of flow cytometrically distinct, low frequency subpopulations.  相似文献   

18.
Cancer stem cells (CSCs) are subpopulations of tumor cells that are responsible for tumor initiation, maintenance and metastasis. Recent studies suggested that lung cancer arises from CSCs. In this study, the expression of potential CSC markers in cell line A549 was evaluated. We applied flow cytometry to assess the expression of putative stem cell markers, including aldehyde dehydrogenase 1 (ALDH1), CD24, CD44, CD133 and ABCG2. Cells were then sorted according to the expression of CD44 and CD24 markers by fluorescence-activated cell sorting (FACS) Aria II and characterized using their clonogenic and sphere-forming capacity. A549 cells expressed the CSC markers CD44 and CD24 at 68.16% and 54.46%, respectively. The expression of the putative CSC marker ALDH1 was 4.20%, whereas the expression of ABCG2 and CD133 was 0.93%. Double-positive CD44/133 populations were rare. CD44+/24+ and CD44+/CD24?/low subpopulations respectively exhibited 64% and 27.92% expression. The colony-forming potentials in the CD44+/CD24+ and CD44+/CD24?/low subpopulations were 84.37 ± 2.86% and 90 ± 3.06%, respectively, while the parental A549 cells yielded 56.65 ± 2.33% using the colony-formation assay. Both isolated subpopulations formed spheres in serumfree medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). CD44 and CD24 cannot be considered potential markers for isolating lung CSCs in cell line A549, but further investigation using in vivo assays is required.  相似文献   

19.
Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells.  相似文献   

20.
Ex vivo-expanded mesenchymal stem cells(MSCs) have been demonstrated to be a heterogeneous mixture of cells exhibiting varying proliferative,multipotential,and immunomodulatory capacities.However,the exact characteristics of MSCs remain largely unknown.By singlecell RNA sequencing of 61,296 MSCs derived from bone marrow and Wharton’s jelly,we revealed five distinct subpopulations.The developmental trajectory of these five MSC subpopulations was mapped,revealing a differentiation path from stem-l...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号