首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Lactobacillus acidophilus 5e2 when grown on skimmed milk, skimmed milk supplemented with sodium formate and skimmed milk supplemented with glucose secretes a branched heteropolysaccharide having a weight average molecular weight less than 450 kDa. The exopolysaccharide has a heptasaccharide repeat unit and is composed of D-glucose, D-galactose and N-acetyl-D-glucosamine in the molar ratio 3:3:1. Using chemical techniques and 1D and 2D-NMR spectroscopy the polysaccharide has been shown to possess the following repeat unit structure:  相似文献   

2.
Bacterial exopolysaccharides (EPS) are products of biotechnology that are of high interest due to their rheological properties. This is the case of sphingans, a group of structurally related EPS secreted by members of the genus Sphingomonas. Among these, gellan is a multifunctional gelling agent produced in high yields by the non-pathogenic strain Sphingomonas elodea ATCC 31461. In its native form, gellan is a linear anionic EPS based on a tetrasaccharide repeat unit composed of two molecules of D: -glucose, one of L: -rhamnose and one of D: -glucuronic acid. The native gellan is partially esterified with acyl substituents (1 mol of glycerate and 0.5 mol of acetate) per repeat unit. Gellan has unique characteristics and has many applications, particularly in the food, pharmaceutical, and biomedical fields. This review summarizes current knowledge on the structure and properties of gellan and provides details about the biosynthesis of this exopolysaccharide. In addition, a highlight of the importance of gellan in industrial and medicinal applications is given.  相似文献   

3.
Streptococcus thermophilus EU20 when grown on skimmed milk secretes a high-molecular-weight exopolysaccharide that is composed of glucose, galactose and rhamnose in a molar ratio of 2:3:2. Using chemical techniques and 1D and 2D-NMR spectroscopy (1H and 13C) the polysaccharide has been shown to possess a heptasaccharide repeating unit having the following structure: [chemical structure: see text]. Treatment of the polysaccharide with mild acid (0.5 M TFA, 100 degrees C for 1 h) liberates two oligosaccharides; the components correspond to the repeating unit and a hexasaccharide equivalent to the repeating unit minus the terminal alpha-L-Rhap.  相似文献   

4.
The structure of the exopolysaccharide (EPS) produced by a clinical isolate of Burkholderia cepacia isolated from a patient with fibrocystic lung disease has been investigated. By means of methylation analyses, carboxyl reduction, partial depolymerization by fuming HCl and chemical degradations such as Smith degradation, lithiumethylenediamine degradation and beta-elimination, supported by GC/MS and NMR spectroscopic analyses, the repeat unit of the EPS has been identified and was shown to correspond to the acidic branched heptasaccharide with the following structure: [formula: see text]. This partially acetylated acidic polymer, distinguished by the presence of the less usual D-isomer of rhamnose and of a trisubstituted glucuronic acid residue, could represent the main EPS produced by this bacterial species.  相似文献   

5.
The exopolysaccharide of Streptococcus thermophilus S3, produced in skimmed milk, is composed of D-galactose and L-rhamnose in a molar ratio of 2:1. The polysaccharide contains 0.4 equiv of O-acetyl groups per repeating unit. Linkage analysis and 1D/2D NMR (1H and 13C) studies on native and O-deacetylated EPS together with nanoES-CID tandem mass spectrometry studies on oligosaccharides generated by a periodate oxidation protocol, show the polysaccharide to have the following structure: [structure: see text].  相似文献   

6.
A novel structure of exopolysaccharide from the lactic acid bacteria (LAB) Lactobacillus rhamnosus KL37B, from the human intestinal flora, is described. During the structural investigation of the exopolysaccharide it was found that the repeating unit is a nonasaccharide, which is the largest repeating unit found in LAB exopolysaccharides to date. The polysaccharide material was prepared by TCA extraction of a bacterial cell mass, purified by anion-exchange and gel permeation chromatography and characterized using chemical and enzymatic methods. On the basis of monosaccharide and methylation analysis and also 1D and 2D 1H and 13C NMR spectroscopy the exopolysaccharide was shown to be composed of the following nonasaccharide repeating unit:The physicochemical cell surface study and adhesive properties indicated distinct surface properties of Lactobacillus rhamnosus strain KL37B with high adhesive abilities to Caco-2 cells, hydrophobicity and slime production, in comparison to other Lactobacillus strains used as controls.  相似文献   

7.
The exopolysaccharide (EPS) from Lactobacillus delbrueckii subsp. bulgaricus EU23 was perdeuteriomethylated and the perdeuteriomethylated EPS (pdm-EPS) purified by elution from a C(18) Sep-Pak cartridge. Both 1D and 2D NMR spectra were recorded for the pdm-EPS and these were interpreted to provide assignments for the individual 1H and 13C resonances of the sugar residues of the repeating unit. Using a combination of the results from monomer analysis and linkage analysis of the native EPS and the ROESY and HMBC NMR spectra of the pdm-EPS the following structure has been determined for the repeating unit:A process for characterising polysaccharides having low solubility in aqueous solution is reported.  相似文献   

8.
Lactococcus lactis subsp. cremoris B39 grown on whey permeate produced an exopolysaccharide containing L-Rha, D-Gal and D-Glc in a molar ratio of 2:3:2. The polysaccharide was modified using an enzyme preparation from Aspergillus aculeatus, resulting in the release of Gal and a polymer with approximately the same hydrodynamic volume as the native polysaccharide. Linkage analysis and 1H NMR studies of both the native and modified exopolysaccharides elucidated that terminally linked Gal was released during modification and that the chemical structure of the branches within the repeating units is: beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->. 2D NMR experiments (both 1H-1H and 1H-13C) revealed that exopolysaccharide B39 consists of a branched heptasaccharide repeating unit with the following structure: [structure: see text].  相似文献   

9.
The primary structure of the exopolysaccharide produced by a clinical isolate of the bacterium Burkholderia cepacia was studied by means of methylation analysis, selective degradation, NMR spectroscopy, and electrospray mass spectrometry. The resulting data showed that the parent repeating unit of the exopolysaccharide is a highly branched heptasaccharide with the following structure: Two acetyl groups are present per repeating unit, as noncarbohydrate substituents.  相似文献   

10.
The structure of an exopolysaccharide (EPS) produced by Burkholderia brasiliensis, a diazotrophic endophytic organism originally isolated from rice roots, has been determined. The bacterium was grown in a synthetic medium, containing mannitol and glutamate, which favours the expression of two anionic EPSs, which were separated by anion-exchange chromatography. The structure of the repeat unit of EPS A, eluted at higher ionic strength, was determined by a combination of methylation analysis, partial hydrolysis, chemical degradations, and NMR spectroscopic studies, and shown to be the linear O-acetylated pentasaccharide: -->4)-alpha-D-Glcp-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GlcpA-(1-->3)-beta-L-Rhap[2OAc]-(1-->4)-beta-D-Glcp-(1-->.  相似文献   

11.
The bile adapted strain Bifidobacterium animalis subsp. lactis IPLA-R1 secretes a high molecular weight exopolysaccharide (HMW-EPS) when grown on the surface of agar-MRSC. This EPS is composed of l-rhamnopyranosyl, d-glucopyranosyl, d-galactopyranosyl and d-galactofuranosyl residues in the ratio of 3:1:1:1. Linkage analysis and 1D and 2D NMR spectroscopy were used to show that the EPS has a hexasaccharide repeating unit with the following structure:Treatment of the EPS with mild acid cleanly removed the terminal d-galactofuranosyl residue. The eps cluster sequenced for strain IPLA-R1 showed high genetic homology with putative eps clusters annotated in the genomes of strains from the same species. It is of note that several genes coding for rhamnose-precursors are present in the eps cluster, which could be correlated with the high percentage of rhamnose detected in its EPS repeated unit.  相似文献   

12.
Members of the bacterial genus Sphingomonas are known to produce highly viscous polysaccharides in solution. The exopolysaccharide PS-EDIV was produced by Sphingomonas pituitosa strain DSM 13101, purified using centrifugation, and precipitation and its structure was elucidated by 1D and 2D NMR techniques and chemical microderivatization combined with various mass spectrometric techniques. The following repeating unit of the polysaccharide could be identified: In addition, the polysaccharide also contains acetyl and glyceryl groups whose exact positions were not determined. PS-EDIV is similar in structure to a known exopolysaccharide but differs in being the first bacterial polysaccharide in which two different glucuronic acids are combined. It caused a high viscosity of the culture broth after cultivation for 48 h, although a gelation was not observed.  相似文献   

13.
Lactococcus lactis subsp. cremoris B891 grown on whey permeate produced an exopolysaccharide containing D-Gal and D-Glc in a molar ratio of 2:3. The polysaccharide was partially O-acetylated. By means of HF solvolysis, O-deacetylation, enzymic modification, sugar linkage analysis and ID/2D NMR studies the exopolysaccharide was shown to be composed of repeating units with the following structure: [structure: see text].  相似文献   

14.
The structure of the exopolysaccharide produced by Pseudoalteromonas reference strain HYD 721 recovered from a deep-sea hydrothermal vent has been investigated. By means of methylation and beta-elimination analysis, selective degradation of the uronic acids, partial depolymerization and NMR studies, the repeating unit of the polymer was deduced to be a branched octasaccharide with the structure shown. [formula: see text]  相似文献   

15.
Cepacian is an exopolysaccharide produced by the majority of the isolates belonging to the Burkholderia cepacia complex bacteria, a group of 17 species, some of which infect cystic fibrosis patients, sometime with fatal outcome. The repeating unit of cepacian consists of a backbone having a trisaccharidic repeating unit with three side chains, as reported in the formula below. The exopolysaccharide is also acetylated, carrying from one to three acetyl esters per repeating unit, depending on the strain examined. The consequences of O-acetyl substitution in a polysaccharide are important both for its biological functions and for industrial applications, including the preparation of conjugated vaccines, since O-acetyl groups are important immunogenic determinants. The location of acetyl groups was achieved by NMR spectroscopy and ESI mass spectrometry and revealed that these substituents are scattered in non-stoichiometric ratio on many sugar residues in different positions, a feature which adds to the already unique carbohydrate structure of the polysaccharide.  相似文献   

16.
Rhizobium sp. strain NGR234 produces large amounts of acidic exopolysaccharide. Mutants that fail to synthesize this exopolysaccharide are also unable to nodulate the host plant Leucaena leucocephala. A hybrid strain of Rhizobium sp. strain NGR234 containing exo genes from Rhizobium meliloti was constructed. The background genetics and nod genes of Rhizobium sp. strain NGR234 are retained, but the cluster of genes involved in exopolysaccharide biosynthesis was deleted. These exo genes were replaced with genes required for the synthesis of succinoglycan exopolysaccharide from R. meliloti. As a result of the genetic manipulation, the ability of these hybrids to synthesize exopolysaccharide was restored, but the structure was that of succinoglycan and not that of Rhizobium sp. strain NGR234. The replacement genes were contained on a cosmid which encoded the entire known R. meliloti exo gene cluster, with the exception of exoB. Cosmids containing smaller portions of this exo gene cluster did not restore exopolysaccharide production. The presence of succinoglycan was indicated by staining with the fluorescent dye Calcofluor, proton nuclear magnetic resonance spectroscopy, and monosaccharide analysis. Although an NGR234 exoY mutant containing the R. meliloti exo genes produced multimers of the succinoglycan repeat unit, as does the wild-type R. meliloti, the deletion mutant of Rhizobium sp. strain NGR234 containing the R. meliloti exo genes produced only the monomer. The deletion mutant therefore appeared to lack a function that affects the multiplicity of succinoglycan produced in the Rhizobium sp. strain NGR234 background. Although these hybrid strains produced succinoglycan, they were still able to induce the development of an organized nodule structure on L. leucocephala. The resulting nodules did not fix nitrogen, but they did contain infection threads and bacteroids within plant cells. This clearly demonstrated that a heterologous acidic exopolysaccharide structure was sufficient to enable nodule development to proceed beyond the developmental barrier imposed on mutants of Rhizobium sp. strain NGR234 that are unable to synthesize any acidic exopolysaccharide.  相似文献   

17.
The structure of an acidic exopolysaccharide (EPS) from eight strains of Burkholderia cepacia has been investigated by methylation and sugar analysis, periodate oxidation-Smith degradation, and partial acid-hydrolysis. An enzyme preparation obtained from the same organisms producing the EPS was also used to depolymerize the polysaccharide. Detailed NMR studies of the chemical and enzymatic degradation products showed that this EPS consists of a highly branched heptasaccharide-repeating unit with the following structure: [abstract: see text]. About three O-acetyl groups per repeating unit are present at undetermined positions.  相似文献   

18.
The structure of a new exopolysaccharide from the virulent strain of Cryphonectria parasitica was elucidated by means of 2D NMR spectroscopy and selective degradations (mild hydrolysis and acetolysis). The polysaccharide is built up of mannose, galactose and rhamnose and has a rather complex non-repetitive structure that can be idealised as follows:  相似文献   

19.
A viscous extracellular polysaccharide produced by Lactobacillus helveticus Lb161 isolated from raw milk has been investigated. Sugar and methylation analysis, and 1H and 13C NMR spectroscopy revealed that the polysaccharide is composed of a heptasaccharide repeating unit. The sequence of sugar residues was determined by use of two-dimensional nuclear Overhauser effect spectroscopy and heteronuclear multiple bond connectivity experiments. The structure of the repeating unit of the exopolysaccharide from L. helveticus Lb161 is as follows: carbohydrate structure [see text]. The polysaccharide contains approximately 0.6 equivalents of O-acetyl group per repeating unit (not located).  相似文献   

20.
The Gram-negative bacterial strain HKI 0380 was isolated from biofilms located on palaeolithic rock paintings in the Cave of Bats in Zuheros, southern Spain. It was identified as the phytopathogenic Erwinia persicina and attracted attention due to the production of considerable quantities of slime. The acidic exopolysaccharide produced by the E. persicina was studied after O-deacylation by sugar and methylation analyses, along with (1)H and (13)C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit of the O-deacylated exopolysaccharide was established: [carbohydrate structure: see text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号