首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical inhibitors were used as probes of mitochondrial ATPase to determine the site of action of DDT on oligomycin-sensitive mitochondrial ATPase (OS-ATPase) using whole mitochondria isolated from red coxal muscle of the American cockroach. Several plotting procedures were employed to delineate the form of inhibition. Relative potency and joint action were used to detect similar action, synergism, and antagonism between DDT and the inhibitory probes DCCD, Nbf-CI, and oligomycin. DDT demonstrated not (strictly) competitive kinetics and may be acting as an uncompetitive inhibitor. DDT and DCCD produced similar additive action. At limiting concentrations of DCCD, inhibition was reduced in the presence of DDT. Effects shown by oligomycin were not altered by DDT. DDT enhanced the effects of Nbf-CI. These interactions, together with the demonstration of not (strictly) competitive kinetics, indicate that DDT may be acting on the membrane sector as an allosteric modifier.  相似文献   

2.
3.
Highly purified preparations of Streptococcus faecalis ATPase contain a similar but inactive protein detected by prolonged polyacrylamide gel electrophoresis. The inactive protein appears to arise by proteolytic cleavage of the major subunits in the enzyme. By use of a new technique, subunit analysis in SDS gels was performed on the enzyme band and the inactive protein band excised from a polyacrylamide gel after electrophoresis. The results indicated that the ATPase has the composition α3β3γ in which α = 60,000, β = 55,000, and γ = 37,000 daltons. The inactive protein appears to have the composition (f)6 in which f = 49,000 daltons. There is also evidence that the enzyme band contains some slightly modified forms of the ATPase, such as α3β2 (f)γ. The inactive protein lacks the capacity for tight nucleotide binding. Our experiments show that the tight ATPase-nucleotide complex formed in S. faecalis cells (the endogenous complex) behaves differently from the tight complex formed in vitro (the exogenous complex). We prepared a doubly labeled complex containing endogenous 32P-labeled ADP and ATP and exogenous 3H-labeled ADP. We observed that the addition of free nucelotide to the doubly labeled ATPase displaced the exogenous bound ligand from the enzyme but not the endogenous bound nucleotide. We suggest that the displaceable and nondisplaceable forms of the tight ATPase-nucleotide complex correspond to two different conformational states of the enzyme.  相似文献   

4.
The ATP hydrolytic activity of the solubilized and purified Ca2+-translocating ATPase from human erythrocyte plasma membrane was strongly inhibited by the nonpolar compound, N,N'-dicyclohexylcarbodiimide, both in the presence and in the absence of calmodulin. However, the more water-soluble carbodiimides, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide had little inhibitory effect on the enzyme. The inhibitory effect of N,N'-dicyclohexylcarbodiimide was most pronounced at acid pH, and declined sharply at alkaline pH values. In addition, the optimum pH for the enzyme activity also shifted to more alkaline values in the presence of the carbodiimide. Calcium ion appears to favor the inhibition induced by the carbodiimide, in contrast to the observed protection by Ca2+ in the sarcoplasmic reticulum Ca2+-translocating ATPase. N,N'-Dicyclohexylcarbodiimide also dramatically decreased the stimulatory effect of calmodulin on the activity of the enzyme.  相似文献   

5.
Or E  Navon A  Rapoport T 《The EMBO journal》2002,21(17):4470-4479
The ATPase SecA mediates post-translational translocation of precursor proteins through the SecYEG channel of the bacterial inner membrane. We show that SecA, up to now considered to be a stable dimer, is actually in equilibrium with a small fraction of monomers. In the presence of membranes containing acidic phospholipids or in certain detergents, SecA completely dissociates into monomers. A synthetic signal peptide also affects dissociation into monomers. In addition, conversion into the monomeric state can be achieved by mutating a small number of residues in a dimeric and fully functional SecA fragment. This monomeric SecA fragment still maintains strong binding to SecYEG in the membrane as well as significant in vitro translocation activity. Together, the data suggest that the SecA dimer dissociates during protein translocation. Since SecA contains all characteristic motifs of a certain class of monomeric helicases, and since mutations in residues shared with the helicases abolish its translocation activity, SecA may function in a similar manner.  相似文献   

6.
R Binet  C Wandersman 《The EMBO journal》1995,14(10):2298-2306
The Erwinia chrysanthemi metalloprotease C and the Serratia marcescens haem acquisition protein HasA are both secreted from Gram-negative bacteria by a signal peptide-independent pathway which requires a C-terminal secretion signal and a specific ABC-transporter made up of three proteins: a membrane ATPase (the ABC-protein), a second inner membrane component belonging to the membrane fusion protein family and an outer membrane polypeptide. HasA and protease C transporters are homologous although the secreted polypeptides share no sequence homology. Whereas protease C can use both translocators, HasA is secreted only by its specific transporter. Functional analysis of protease C and HasA secretion through hybrid transporters obtained by combining components from each system demonstrates that the ABC-protein is responsible for the substrate specificity and that inhibition of protease C secretion in the presence of HasA results from a defective interaction between HasA and the ABC-protein. We also show that the outer membrane protein, TolC, can combine with the membrane fusion protein HasE in the presence of either ABC-protein to form a functional transporter but not with the membrane fusion protein, PrtE. This indicates a specific interaction between the outer membrane component and the membrane fusion protein.  相似文献   

7.
The superoxide radicals generated by the xanthine oxidase reaction reduced the myofibrillar Ca2+-ATPase activity. This negative effect was prevented by superoxide dismutase or by dithiothreitol, a protective thiol compound. Partial protection was achieved by catalase, while mannitol was ineffective. The myofibrillar Ca2+-ATPase exposed to O2-. radicals did not modify the affinity for Ca2+ while it showed a remarkable reduction of Vmax measured at the saturating level of Ca2+. The O2-. inhibited myofibrillar ATPase showed a higher value of Km for the cofactor associated to a reduced value of Vmax when studied in the presence of increasing concentration of ATP. Thus, circumstances that enhance the production of cardiac O2- radicals can be considered a negative metabolic event capable of depressing the myofibrillar Ca2+-ATPase activity.  相似文献   

8.
Role of membrane gangliosides in the binding and action of bacterial toxins   总被引:31,自引:0,他引:31  
Summary Gangliosides are complex glycosphingolipids that contain from one to several residues of sialic acid. They are present in the plasma membrane of vertebrate cells with their oligosaccharide chains exposed to the external environment. They have been implicated as cell surface receptors and several bacterial toxins have been shown to interact with them. Cholera toxin, which mediates its effects on cells by activating adenylate cyclase, bind with high affinity and specificity to ganglioside GM1. Toxin-resistant cells which lack GM1 can be sensitized to cholera toxin by treating them with GM1. Cholera toxin specifically protects GM1 from cell surface labeling procedures and only GM1 is recovered when toxin-receptor complexes are isolated by immunoadsorption. These results clearly demonstrate that GM1 is the specific and only receptor for cholera toxin. Although cholera toxin binds to GM1 on the external side of the plasma membrane, it activates adenylate cyclase on the cytoplasmic side of the membrane by ADP-ribosylation of the regulatory component of the cyclase. GM1 in addition to functioning as a binding site for the toxin appears to facilitate its transmembrane movement. The heat-labile enterotoxin ofE. coli is very similar to cholera toxin in both form and function and can also use GM1 as a cell surface receptor. The potent neurotoxin, tetanus toxin, has a high affinity for gangliosides GD1b and GT1b and binds to neurons which contain these gangliosides. It is not yet clear whether these gangliosides are the physiological receptors for tetanus toxin. By applying the techniques that established GM1 as the receptor for cholera toxin, the role of gangliosides as receptors for tetanus toxin as well as physiological effectors may be elucidated.  相似文献   

9.
10.
11.
12.
13.
A membrane fraction enriched with magnesium-dependent ATPase activity was isolated from sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI and sucrose density gradient centrifugation. This activity was inhibited by vanadate, N,N′-dicyclohexylcarbodiimide and diethylstilbestrol, but was insensitive to molybdate, azide, oligomycin, ouabain, and nitrate, suggesting enrichment in plasma membrane ATPase. The enzyme was substrate specific for ATP, had a pH optimum of 7.0, but showed little stimulation by 50 mM KCl. The sugarbeet ATPase preparation contained endogenous protein kinase activity which could be reduced by extraction of the membranes with 0.1% (w/v) sodium deoxycholate. Reduction of protein kinase activity allowed the demonstration of a rapidly turning over phosphorylated intermediate on a Mr 105000 polypeptide, most likely representing the catalytic subunit of the ATPase. Phosphorylation was magnesium dependent, sensitive to diethylstilbestrol and vanadate but insensitive to oligomycin and azide. Neither the ATPase activity nor phosphoenzyme level were affected by combinations of sodium and potassium in the assay. These results argue against the presence of a synergistically stimulated NaK-ATPase at the plasma membrane of sugarbeet.  相似文献   

14.
15.
Bilirubin in the presence of O2 and light catalyzes the photodynamic modification of the proteins of the inner mitochondrial membrane as monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Numerous polypeptide bands become streaked towards higher apparent molecular weight and decrease in staining intensity while other bands remain largely unchanged. The loss in staining intensity which occurs is at least partially due to apparent cross-linking of the polypeptides to produce aggregates which cannot penetrate into the gel. The α and β bands of the mitochondrial ATPase differ markedly in their susceptibility to modification. The β subunit is rapidly modified while the α subunit is largely inert. This differential susceptibility is a consequence of the binding of the soluble F1 ATPase to the membrane. When submitochondrial particles with their normal complement of bound F1 are mixed with free F1 and are photolyzed together in the presence of bilirubin and O2, it is found that the β subunit of the membrane-bound F1, but not the α subunit, has been modified while neither subunit of the free F1 has been modified. This increased susceptibility of the β subunit in the membrane state may represent cross-linking to membrane components and is consistent with the β subunit making more extensive contacts with membrane components than does the α subunit.  相似文献   

16.
Changes in the Mg-ATPase and Na, K-ATPase activity of the rat erythrocyte and Candida guilliermondii membranes under the effect of roseofungin were studied. The antibiotic was totally bound to the isolated plasmatic membranes of Candida guilliermondii, up to 3 micrograms of the antibiotic per 1 microgram of the yeast protein. The Mg-APTase activity of these membranes was slightly inhibited by the antibiotic. The activity of Na, K-ATPase was almost completely inhibited even at 0.04 mg of roseofungin per 1 mg of protein. Much higher concentrations of the antibiotic inhibited the Mg-ATPase and Na, K-ATPase activity of the erythrocyte membranes to a less extent.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号