首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Saccharomyces cerevisiae gene PDC5 encodes the minor isoform of pyruvate decarboxylase (Pdc). In this work we show that expression of PDC5 but not that of PDC1, which encodes the major isoform, is repressed by thiamine. Hence, under thiamine limitation both PDC1 and PDC5 are expressed. PDC5 also becomes strongly expressed in a pdc1delta mutant. Two-dimensional gel electrophoresis of whole protein extracts shows that thiamine limitation stimulates the production of THI gene products and of Pdc5p. Deletion of PDC1 only stimulates production of Pdc5p. We conclude that the stimulation of PDC5 expression in a pdc1delta mutant is not due to a response to thiamine limitation.  相似文献   

2.
3.
An RGR1 gene product is required to repress expression of glucose-regulated genes in Saccharomyces cerevisiae. The abnormal morphology of rgr1 cells was studied. Scanning and transmission electron microscopic observations revealed that the cell wall of the daughter cell remained attached to that of mother cell. We cloned the RGR1 gene by complementation and showed that the cloned DNA was tightly linked to the chromosomal RGR1 locus. The cloned RGR1 gene suppressed all of the phenotypes caused by the mutation and encoded a 3.6-kilobase poly(A)+ RNA. The RGR1 gene is located on chromosome XII, as determined by pulsed-field gel electrophoresis, and we mapped rgr1 between gal2 and pep3 by genetic analysis. rgr1 was shown to be a new locus. We also determined the nucleotide sequence of RGR1, which was predicted to encode a 123-kilodalton protein. The null mutation resulted in lethality, indicating that the RGR1 gene is essential for growth. On the other hand, a carboxy-terminal deletion of the gene caused phenotypes similar to but more severe than those caused by the original mutation. The amount of reserve carbohydrates was reduced in rgr1 cells. Possible functions of the RGR1 product are discussed.  相似文献   

4.
5.
We cloned a DNA fragment from Saccharomyces cerevisiae that complemented the deficiency in high-affinity glutathione transport activity conferred by a gsh11 mutation, and found that the ORF responsible was YJL212c, which had already been designated as OPT1 and HGT1 by others. Northern analysis clearly demonstrated that this ORF, now referred to as OPT1/ HGT1/ GSH11, was induced by sulfur starvation and repressed by adding cysteine to the growth medium. Reporter gene assays showed that a segment spanning the region between positions -371 and -355 was essential for the regulation of this gene. A sequence of 9 nt, CCGCCACAC (from -364 to -356), in this region was shown to be required for protein binding, using an electrophoretic mobility shift assay. Based on these results, we propose that CCGCCACAC comprises the core of a cis-acting element involved in cysteine-responsive gene regulation in S. cerevisiae.  相似文献   

6.
7.
8.
We cloned the GLC7/DIS2S1 gene by complementation of the cid1-226 mutation, which relieves glucose repression in Saccharomyces cerevisiae. GLC7 encodes the catalytic subunit of type 1 protein phosphatase (PP1). Genetic analysis and sequencing showed that cid1-226 is an allele of GLC7, now designated glc7-T152K, which alters threonine 152 to lysine. We also show that the glc7-1 and glc7-T152K alleles cause distinct phenotypes: glc7-1 causes a severe defect in glycogen accumulation but does not relieve glucose repression, whereas glc7-T152K does not prevent glycogen accumulation. These findings are discussed in light of evidence that interaction with different regulatory or targeting subunits directs the participation of PP1 in diverse cellular regulatory mechanisms. Finally, genetic studies suggest that PP1 functions antagonistically to the SNF1 protein kinase in the regulatory response to glucose.  相似文献   

9.
10.
11.
12.
ADY1 is identified in a genetic screen for genes on chromosome VIII of Saccharomyces cerevisiae that are required for sporulation. ADY1 is not required for meiotic recombination or meiotic chromosome segregation, but it is required for the formation of four spores inside an ascus. In the absence of ADY1, prospore formation is restricted to mainly one or two spindle poles per cell. Moreover, the two spores in the dyads of the ady1 mutant are predominantly nonsisters, suggesting that the proficiency to form prospores is not randomly distributed to the four spindle poles in the ady1 mutant. Interestingly, the meiosis-specific spindle pole body component Mpc54p, which is known to be required for prospore membrane formation, is localized predominantly to only one or two spindle poles per cell in the ady1 mutant. A partially functional Myc-Pfs1p is localized to the nucleus of mononucleate meiotic cells but not to the spindle pole body or prospore membrane. These results suggest that Pfs1p is specifically required for prospore formation at selected spindle poles, most likely by ensuring the functionality of all four spindle pole bodies of a cell during meiosis II.  相似文献   

13.
14.
15.
16.
17.
18.
The TUP1 and CYC8 (= SSN6) genes of Saccharomyces cerevisiae play a major role in glucose repression. Mutations in either TUP1 or CYC8 eliminate or reduce glucose repression of many repressible genes and induce other phenotypes, including flocculence, failure to sporulate, and sterility of MAT alpha cells. The TUP1 gene was isolated in a screen for genes that regulate mating type (V.L. MacKay, Methods Enzymol. 101:325-343, 1983). We found that a 3.5-kb restriction fragment was sufficient for complete complementation of tup1-100. The gene was further localized by insertional mutagenesis and RNA mapping. Sequence analysis of 2.9 kb of DNA including TUP1 revealed only one long open reading frame which predicts a protein of molecular weight 78,221. The predicted protein is rich in serine, threonine, and glutamine. In the carboxyl region there are six repeats of a pattern of about 43 amino acids. This same pattern of conserved residues is seen in the beta subunit of transducin and the yeast CDC4 gene product. Insertion and deletion mutants are viable, with the same range of phenotypes as for point mutants. Deletions of the 3' end of the coding region produced the same mutant phenotypes as did total deletions, suggesting that the C terminus is critical for TUP1 function. Strains with deletions in both the CYC8 and TUP1 genes are viable, with phenotypes similar to those of strains with a single deletion. A deletion mutation of TUP1 was able to suppress the snf1 mutation block on expression of the SUC2 gene encoding invertase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号