共查询到20条相似文献,搜索用时 0 毫秒
1.
《Neurochemistry international》2008,52(8):476-485
The present study aimed at elucidating the molecular identity of the proposed “I1-imidazoline receptors”, i.e. non-adrenoceptor recognition sites via which the centrally acting imidazolines clonidine and moxonidine mediate a major part of their effects. In radioligand binding experiments with [3H]clonidine and [3H]lysophosphatidic acid on intact, α2-adrenoceptor-deficient PC12 cells, moxonidine, clonidine, lysophosphatidic acid and sphingosine-1-phosphate (S1P) competed for the specific binding sites of both radioligands with similar affinities. RNA interference with the rat S1P1-, S1P2- or S1P3-receptor abolished specific [3H]lysophosphatidic acid binding. [3H]Clonidine binding was markedly decreased by siRNA targeting S1P1- and S1P3-receptors but not by siRNA against S1P2-receptors. Finally, in HEK293 cells transiently expressing human S1P3-receptors, sphingosine-1-phosphate, clonidine and moxonidine induced increases in intracellular calcium concentration, moxonidine being more potent than clonidine; this is in agreement with the known properties of the “I1-imidazoline receptors”.The present results indicate that the “I1-imidazoline receptors” mediating effects of clonidine and moxonidine in PC12 and the transfected HEK293 cells belong to the S1P-receptor family; in particular, the data obtained in PC12 cells suggest that the I1 imidazoline receptors represent a mixture of S1P1- and S1P3-receptors and/or hetero-dimers of both. 相似文献
2.
Young-Hwan Kim Taick-Sang Nam Duck-Sun Ahn Seungsoo Chung 《Biochemical and biophysical research communications》2011,(4):645
Moxonidine, an imidazoline deriviatives, suppress the vasopressor sympathetic outflow to produce hypotension. This effect has been known to be mediated in part by suppressing sympathetic outflow via acting imidazoline I1 receptors (IR1) at postganglionic sympathetic neurons. But, the cellular mechanism of IR1-induced inhibition of noradrenaline (NA) release is still unknown. We therefore, investigated the effect of IR1 activation on voltage-dependent Ca2+ channels which is known to play an pivotal role in regulating NA in rat superior cervical ganglion (SCG) neurons, using the conventional whole-cell patch-clamp method. In the presence of rauwolscine (3 μΜ), which blocks α2-adrenoceptor (Rα2), moxonidine inhibited voltage-dependent Ca2+ current (ICa) by about 30%. This moxonidine-induced inhibition was almost completely prevented by efaroxan (10 μΜ) which blocks IR1 as well as Rα2. In addition, ω-conotoxin (CgTx) GVIA (1 μΜ) occluded moxonidine-induced inhibition of ICa, but, moxonidine-induced ICa inhibition was not affected by pertussis toxin (PTX) nor shows any characteristics of voltage-dependent inhibition. These data suggest that moxonidine inhibit voltage-dependent N-type Ca2+ current (ICa–N) via activating IR1. Finally, moxonidine significantly decreased the frequency of AP firing in a partially reversible manner. This inhibition of AP firing was almost completely occluded in the presence of ω-CgTx. Taken together, our results suggest that activation of IR1 in SCG neurons reduced ICa–N in a PTX-and voltage-insensitive pathway, and this inhibition attenuated repetitive AP firing in SCG neurons. 相似文献
3.
Saranya Kittanakom Thitima Keskanokwong Varaporn Akkarapatumwong Pa-thai Yenchitsomanus 《Molecular membrane biology》2013,30(6):395-402
Kanadaptin (k¯idney anion exchanger adaptor protein) is a widely expressed protein, shown previously to interact with the cytosolic domain of mouse Cl?/HCO3? anion exchanger 1 (kAE1) but not erythroid AE1 (eAE1) by a yeast-two hybrid assay. Kanadaptin was co-localized with kAE1 in intracellular membranes but not at the plasma membrane in α-intercalated cells of rabbit kidney. It was suggested that kanadaptin is an adaptor protein or chaperone involved in targeting kAE1 to the plasma membrane. To test this hypothesis, the interaction of human kanadaptin with human kAE1 was studied in co-transfected HEK293 cells. Human kanadaptin contains 796 amino acids and was immuno-detected as a 90 kDa protein in transfected cells. Pulse-chase experiments showed that it has a half-life (t1/2) of 7 h. Human kanadaptin was localized predominantly to the nucleus, whereas kAE1 was present intracellularly and at the plasma membrane. Trafficking of kAE1 from its site of synthesis in the endoplasmic reticulum to the plasma membrane was unaffected by co-expression of human kanadaptin. Moreover, we found that no interaction between human kanadaptin and kAE1 or eAE1 could be detected in co-transfected cells either by co-immunoprecipitation or by histidine6-tagged co-purification. Taken together, we found that human kanadaptin did not interact with kAE1 and had no effect on trafficking of kAE1 to the plasma membrane in transfected cells. Kanadaptin may not be involved in the biosynthesis and targeting of kAE1. As such, defects in kanadaptin and its interaction with kAE1 are unlikely to be involved in the pathogenesis of the inherited kidney disease, distal renal tubular acidosis (dRTA). 相似文献
4.
As a novel bioaffinity chromatographic technique, cell membrane chromatography (CMC) originated in 1996. The cell membrane stationary phase (CMSP) consists of porous silica coated with active cell membranes. By immersing silica into a suspension of cell membranes, the whole surface of silica was covered by the cell membranes. The present study repeatedly investigated the interaction between ligands and receptors by employing the system of CMC and especially evaluated the accuracy and feasibility of the CMC model in the study of subtype receptors. The cDNA encoding alpha1A or alpha1B adrenergic receptors (ARs) was transfected into human embryonic kidney 293 (HEK293) cell lines; cell lines stably overexpressing subtype receptors were obtained. HEK293 alpha1A or HEK293 alpha1B ARs CMSP were prepared by immobilizing relevant cell membranes on silica. In the described chromatography-based CMSP, the retention times of nine alpha1 adrenoceptor ligands and calculated capacity factors, as chromatographic parameters, were recorded carefully. These results showed a good correlation with the affinity of the same compounds for the corresponding cloned alpha1 adrenoceptor subtype. The rank order of capacity factors was consistent with the affinity rank order obtained from radioligand binding assays. The immobilized subtype-selective CMSP was stable and reproducible. The study demonstrates that the HEK293 alpha1A and HEK293 alpha1B CMSP can be utilized for initial screening of drug candidates. 相似文献
5.
Kittanakom S Keskanokwong T Akkarapatumwong V Yenchitsomanus PT Reithmeier RA 《Molecular membrane biology》2004,21(6):395-402
Kanadaptin (kidney anion exchanger adaptor protein) is a widely expressed protein, shown previously to interact with the cytosolic domain of mouse Cl-/HCO3- anion exchanger 1 (kAE1) but not erythroid AE1 (eAE1) by a yeast-two hybrid assay. Kanadaptin was co-localized with kAE1 in intracellular membranes but not at the plasma membrane in alpha-intercalated cells of rabbit kidney. It was suggested that kanadaptin is an adaptor protein or chaperone involved in targeting kAE1 to the plasma membrane. To test this hypothesis, the interaction of human kanadaptin with human kAE1 was studied in co-transfected HEK293 cells. Human kanadaptin contains 796 amino acids and was immuno-detected as a 90 kDa protein in transfected cells. Pulse-chase experiments showed that it has a half-life (t1/2) of 7 h. Human kanadaptin was localized predominantly to the nucleus, whereas kAE1 was present intracellularly and at the plasma membrane. Trafficking of kAE1 from its site of synthesis in the endoplasmic reticulum to the plasma membrane was unaffected by co-expression of human kanadaptin. Moreover, we found that no interaction between human kanadaptin and kAE1 or eAE1 could be detected in co-transfected cells either by co-immunoprecipitation or by histidine6-tagged co-purification. Taken together, we found that human kanadaptin did not interact with kAE1 and had no effect on trafficking of kAE1 to the plasma membrane in transfected cells. Kanadaptin may not be involved in the biosynthesis and targeting of kAE1. As such, defects in kanadaptin and its interaction with kAE1 are unlikely to be involved in the pathogenesis of the inherited kidney disease, distal renal tubular acidosis (dRTA). 相似文献
6.
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery. 相似文献
7.
Coactivator-associated arginine methyl transferase 1 (CARM1) is a protein arginine methyltransferase (PRMT) family member that functions as a coactivator in androgen and estrogen signaling pathways and plays a role in the progression of prostate and breast cancer. CARM1 catalyzes methylation of diverse protein substrates. Prior attempts to purify the full-length mouse CARM1 protein have proven unsatisfactory. The full-length protein expressed in Escherichia coli forms insoluble inclusion bodies that are difficult to denature and refold. The presented results demonstrate the use of a novel HaloTag? technology to purify full-length CARM1 from both E. coli and mammalian HEK293T cells. A small amount of CARM1 was purified from E. coli; however, the protein was truncated on the N-terminus by 10-50 amino acids, most likely due to endogenous proteolytic activity. In contrast, substantial quantities of soluble full-length CARM1 were purified from transiently transfected HEK293T cells. The CARM1 from HEK293T cells was isolated alongside a number of co-purifying interacting proteins. The covalent bond formed between the HaloTag and the HaloLink resin allowed the use of stringent wash conditions without risk of eluting the CARM1 protein. The results also illustrate a highly effective approach for purifying and enriching both CARM1-associated proteins as well as substrates for CARM1's methyltransferase activity. 相似文献
8.
Takahito Nishiyama 《Biochemical and biophysical research communications》2010,394(3):459-567
Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process. 相似文献
9.
H.S. Yung Kevin B.S. Chow K.H. Lai H. Wise 《Prostaglandins, leukotrienes, and essential fatty acids》2009,81(1):65-71
Cyclooxygenase-1 (COX-1) behaves as a delayed response gene in rat pheochromocytoma (PC12) cells exposed to nerve growth factor (NGF). To investigate the possible targets for COX-1 generated prostanoids in the early stages of neuronal differentiation, we have examined the expression of prostanoid receptors by PC12 cells using functional assays. Prostanoid receptor-specific agonists failed to activate adenylyl cyclase in undifferentiated and NGF-treated PC12 cells; neither did they stimulate phospholipase C activity. EP3 receptor agonists and PGF2α were the only active ligands, able to inhibit forskolin-stimulated adenylyl cyclase activity. PC12 cells expressed EP3 and FP receptor mRNA, but only the responses to EP3 receptor agonists were inhibited by the EP3 receptor antagonist ONO-AE3-240. The functional role of NGF-stimulated COX-1 remains to be determined since we found no strong evidence of a role for EP3 receptors in the morphological changes induced by NGF during the early stages of differentiation of PC12 cells. 相似文献
10.
Jisheng Guo Xiaoyue Wang Xin Lü Ruirui Jing Junqiang Li CuiLing Li 《Cell cycle (Georgetown, Tex.)》2016,15(12):1591-1601
ADAR1 is a double-stranded RNA (dsRNA) editing enzyme that specifically converts adenosine to inosine. ADAR1 is ubiquitously expressed in eukaryotes and participate in various cellular processes such as differentiation, proliferation and immune responses. We report here a new proteomics study of HEK293T cells with and without ADAR1 overexpression. The up- and down-regulated proteins by ADAR1 overexpression are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by label-free protein quantification. Totally 1,495 proteins (FDR < 0.01) are identified, among which 211 are up- and 159 are down-regulated for at least 1.5-fold (n = 3, p < 0.05). Gene ontology analysis reveals that these ADAR1-regulated proteins are involved in protein translation and cell cycle regulation. Bioinformatics analysis identifies a closely related network consistent for the protein translation machinery and a tightly connected network through proliferating cell nuclear antigen (PCNA)-interactions. Up-regulation of the proteins in the PCNA-mediated cell proliferation network is confirmed by Western blotting. In addition, ADAR1 overexpression is confirmed to increase cell proliferation in HEK293T cells and A549 cells. We conclude that ADAR1 overexpression modulates the protein translation and cell cycle networks through PCNA-mediated protein-protein interaction to promote cell proliferation in HEK293 cells. 相似文献
11.
为了明确α1-肾上腺素受体(α1-adrenergic receptor,α1-AR)三种亚型在人胚胎肾(human embryonic kidney,HEK)293A细胞株中的分布特点,及其在激动剂作用下在细胞内的定位改变,本研究采用放射配体结合实验、实时荧光共聚焦成像和Western blot方法检测α1-AR三种亚型在细胞中的定位及蛋白质表达的变化。结果发现:(1)α1-AR三种亚型在HEK293A细胞株转染效率相同,均达90%以上。三株细胞的粗制膜上α1B-AR表达量最高,α1D-AR最低,α1A-AR居中,但三者的解离常数(配)相等;(2)在无激动剂作用时,α1A-AR均匀地分布在HEK293A细胞的胞膜和胞浆,α1B-AR主要位于胞膜,而α1D-AR则主要分布在胞浆中:(3)用α1-AR激动剂苯‘肾上腺素(phenylephrine,PE)刺激细胞1h后,α1A-和α1B-AR在胞膜上分布明显减少,而在胞浆中分布增加,其中α1B-AR变化更为显著,α1D-AR的分布在PE作用下无明显变化。以上结果提示,在激动剂作用下,α1-AR二种亚型在HEK293A细胞中的定位特点和分布变化各有不同。 相似文献
12.
Gan L Alexander JM Wittelsberger A Thomas B Rosenblatt M 《Protein expression and purification》2006,47(1):296-302
Human parathyroid hormone-1 receptor (hPTHR1) belongs to class II of the G protein-coupled receptor (GPCR) family, whose members all contain a seven-transmembrane helix domain. The receptor regulates bone metabolism through interactions with its ligand, human parathyroid hormone (hPTH). For structural studies of the hPTHR1/hPTH complex, we constructed a mammalian cell line to stably express recombinant hPTHR1 in large-scale. The receptor was solubilized with dodecyl maltoside and purified with affinity chromatography. The purified receptor displayed restricted N-glycosylation as expected. Functionality was demonstrated: the hPTHR1 retained affinity for bPTH-(1-34) and specifically cross-linked to a radioiodinated bPTH-(1-34) analog. This work describes an approach for preparing milligram-scale quantities of receptor for elucidation of the structural biology of this seven-transmembrane GPCR. 相似文献
13.
Shreeve SM Sreedharan SP Hacker MP Gannon DE Morgan MJ 《Biochemical and biophysical research communications》2000,272(3):922-928
We have characterized vasoactive intestinal peptide (VIP) receptor/G-protein coupling in rat alveolar macrophage (AM) membranes and find that pertussis toxin treatment and antisera against G(alphai3) and G(alphas) reduce high-affinity (125)I-VIP binding, indicating that both G(alphas) and G(alphai3) couple to the VIP-receptor. The predominant VIP-receptor subtype in AM is VPAC(1) and we examined the G-protein interactions of the human VPAC(1) that had been transfected into HEK293 cells. VPAC(1) has a molecular mass of 56 kDa; GTP analogs reduced (125)I-VIP binding to this protein demonstrating that high-affinity binding of VIP to the receptor requires coupling to G-protein. Functional VIP/VPAC(1)/G-protein complexes were captured by covalent cross-linking and analyzed by Western blotting. The transfected human VPAC(1) receptor in HEK293 was found to be coupled to G(alphas) but not G(alphai) or G(alphaq). Furthermore, pertussis toxin treatment had no effect on VPAC(1)/G-protein coupling in these cells. These observations suggest that the G-proteins activated by VPAC(1) may be dependent upon species and cell type. 相似文献
14.
15.
16.
《Bioorganic & medicinal chemistry letters》2020,30(22):127501
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents. 相似文献
17.
Akiyama T Sadahira Y Matsubara K Mori M Igarashi Y 《Journal of molecular histology》2008,39(5):527-533
Sphingosine-1-phosphate receptor 1 (S1P1), a receptor for sphingosine-1-phosphate, has been shown to play an important role in the migration, proliferation, and survival
of several types of cell including endothelial cells. Given that S1P1 signaling could serve as a therapeutic target, we evaluate the expression of S1P1 in formalin-fixed and paraffin-embedded sections from human tissues, using automated immunostainers (Ventana). The specificity
of the polyclonal rabbit anti-human S1P1 antibody used in this study was defined by immunostaining of the vasculature in S1P
1
−/−
and S1P
1
+/−
mouse embryos. The antibody stained the newly formed vasculatures ex vivo in a serum-free matrix culture model using rat
aortic rings. In human specimens, S1P1 was strongly expressed on the cell surface membrane of endothelial cells of blood and lymphatic vessels in all tissues examined.
The expression of S1P1 was confirmed by the flow cytometric analysis and real time RT-PCR of an angiosarcoma cell line. This study indicates that
S1P1 can be used as an immunohistochemical marker for human tissue endothelial cells. 相似文献
18.
Sphingosine kinase activity confers resistance to apoptosis by fumonisin B1 in human embryonic kidney (HEK-293) cells 总被引:1,自引:0,他引:1
Fumonisin B1 induces cytotoxicity in sensitive cells by inhibiting ceramide synthase due to its structural similarity to the long-chain backbones of sphingolipids. The resulting accumulation of sphingoid bases has been established as a mechanism for fumonisin B1 cytotoxicity. We found that despite the accumulation of sphinganine, human embryonic kidney (HEK-293) cells are resistant to fumonisin B1 toxicity; 25 microM fumonisin B1 exposure for 48 h did not increase apoptosis in these cells, while it did so in sensitive porcine kidney epithelial (LLC-PK1) cells. In this study, DL-threo-dihydrosphingosine, the sphingosine kinase inhibitor (SKI), considerably increased the sensitivity of HEK-293 cells to fumonisin B1. Treatment of these cells with 25 microM fumonisin B1 and 2.5 microM SKI increased apoptosis. Sphingoid bases, sphinganine or sphingosine, added to cell cultures induced apoptosis by themselves and their effects were potentiated by SKI or fumonisin B1. Addition of physiological amounts of sphingosine-1-phosphate prevented the toxic effects induced by SKI inhibition and fumonisin B1. Results indicated that HEK-293 cells are resistant to fumonisin B1 due to rapid formation of sphingosine-1-phosphate that imparts survival properties. Taken together, these findings suggest that sphingoid base metabolism by sphingosine kinase may be a critical event in rendering the HEK-293 cells relatively resistant to fumonisin B1-induced apoptosis. 相似文献
19.
L Edwards D Fishman P Horowitz N Bourbon M Kester P Ernsberger 《Journal of neurochemistry》2001,79(5):931-940
We sought to further elucidate signal transduction pathways for the I1-imidazoline receptor in PC12 cells by testing involvement of protein kinase C (PKC) isoforms (betaII, epsilon, zeta), and the mitogen-activated protein kinases (MAPK) ERK and JNK. Stimulation of I1-imidazoline receptor with moxonidine increased enzymatic activity of the classical betaII isoform in membranes by about 75% and redistributed the atypical isoform into membranes (40% increase in membrane-bound activity), but the novel isoform of PKC was unaffected. Moxonidine and clonidine also increased by greater than two-fold the proportion of ERK-1 and ERK-2 in the phosphorylated active form. In addition, JNK enzymatic activity was increased by exposure to moxonidine. Activation of ERK and JNK followed similar time courses with peaks at 90 min. The action of moxonidine on ERK activation was blocked by the I1-receptor antagonist efaroxan and by D609, an inhibitor of phosphatidylcholine-selective phospholipase C (PC-PLC), previously implicated as the initial event in I1-receptor signaling. Inhibition or depletion of PKC blocked activation of ERK by moxonidine. Two-day treatment of PC12 cells with the I1/alpha2-agonist clonidine increased cell number by up to 50% in a dose related manner. These data suggest that ERK and JNK, along with PKC, are signaling components of the I1-receptor pathway, and that this receptor may play a role in cell growth. 相似文献
20.
Kai-Fu Tang Guan-Bin Song Yi-Song Shi Lin Yuan Yong-Hua Li 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010