首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

2.
In this review, effects of the composition of the inseminate on uterine response and pregnancy rates in mares are discussed. The inseminate can differ for volume, sperm concentration, total sperm numbers, presence, absence, or proportion of seminal plasma, and extender composition. Semen can be used as fresh, cooled, or frozen. The site of semen deposition also plays a role; semen is deposited either into the uterine body (standard artificial insemination (AI)) or into the tip of the uterine horn ipsilateral to the preovulatory follicle (deep AI) using the hysterocopical or transrectally guided techniques. In addition to pregnancy rates, some uterine responses to the inseminate are considered including myometrial contractions, transport and elimination of sperm, and uterine inflammation, which is reflected as numbers of polymorphonuclear leukocytes, enzyme levels, and presence of intrauterine fluid. Reproductively normal and abnormal mares are compared.  相似文献   

3.
Ninety five mares were inseminated with frozen semen either within 12 h before ovulation or within 8 h after ovulation. The effect of preovulatory versus postovulatory insemination (AI) on the subsequent detection of uterine fluid was studied. The overall pregnancy rate was 43% and this was not significantly influenced by preovulatory or postovulatory insemination. When mares were first examined 12 h after AI, 18 of 52 mares (35%) had accumulated uterine fluid. However, when mares were first examined 18 to 24 h after AI, only 6 of 43 mares (14%) had uterine fluid. Presence of intrauterine fluid significantly lowered pregnancy rates. Timing of insemination did not affect incidence of uterine fluid. Serum concentrations of estrogen and progesterone at time of insemination did not influence uterine clearance or pregnancy rates, but both hormones were higher at preovulatory than at postovulatory inseminations. We concluded that there was no evidence that postovulatory inseminations would predispose mares to persistence of uterine fluid after AI.  相似文献   

4.
Placement of sperm deep in the equine uterine horn allows fewer sperm to be inseminated while maintaining acceptable fertility, and has been promoted for use in circumstances when fertility would be expected to be low if standard insemination were used (e.g., semen from a subfertile stallion, or frozen-thawed semen). Two main techniques, transrectally guided (TRG) and hysteroscopic (HYS) insemination, have been developed for this purpose; however, there is some controversy regarding their comparative efficacy. This study was conducted to compare pregnancy rates when mares were inseminated by TRG or HYS, using sperm numbers approaching and under the minimum threshold, resulting in reduced fertility. When 1 × 106 sperm were inseminated, pregnancy rates were not different (P > 0.10) between techniques HYS (10/13, 77%) and TRG (11/15, 73%). Similarly, when 0.5 × 106 sperm were inseminated, pregnancy rates were not different (P > 0.10) between techniques HYS (3/15, 20%) and TRG (4/13, 31%). Combined pregnancy rates for the two treatments were 13/28 (46%) for HYS and 15/28 (54%) for TRG (P > 0.10). Pregnancy rates using a subthreshold number of sperm were not significantly affected by a deep-horn insemination technique.  相似文献   

5.
Semen quality, mare status and mare management during estrus will have the greatest impact on pregnancy rates when breeding mares with frozen semen. If semen quality is not optimal, mare selection and reproductive management are crucial in determining the outcome. In addition to mare selection, client communication is a key factor in a frozen semen program. Old maiden mares and problem mares should be monitored for normal cyclicity and all, except young maidens, should have at least a uterine culture and cytology performed. Mares with positive bacterial cultures and cytologies should be treated at least three consecutive days when in estrus with the proper antibiotic. With frozen semen, timing the ovulation is highly desirable in order to reduce the interval between breeding and ovulation. The use of ovulation inducing agents such as human chorionic gonadotropin (hCG) or the GnRH analogue, deslorelin, are critical components to accurately time the insemination with frozen semen. Most hCG treated mares ovulate 48h post-treatment (12-72h) while most deslorelin (Ovuplant) treated mares ovulate 36-42h post-treatment. However, mares bred more than once during the breeding cycle appear to have a slight but consistent increase in pregnancy rate compared to mares bred only once pre- or post-ovulation. In addition, the "capacitation-like" changes inflicted on the sperm during the process of freezing and thawing appear to be responsible for the shorter longevity of cryopreserved sperm. Therefore, breeding closer to ovulation should increase the fertility for most stallions with frozen semen. Recent evidence would suggest that breeding close to the uterotubal junction increases the sperm numbers in the oviduct increasing the chances of pregnancy. Post-breeding examinations aid in determining ovulation and uterine fluid accumulations so that post-breeding therapies can be instituted if needed. Average pregnancy rates per cycle of mares bred with frozen semen are between 30 and 40% with a wide range between sires. Stallion and mare status are major factors in determining the success of frozen semen inseminations. Pregnancy rates are lower for barren and old maiden mares as well as those mares treated for uterine infections during the same cycle of the insemination. To maximize fertility with frozen semen, a careful selection of the stallions and mares, with proper client communication is critical. Dedication and commitment of mare owner and inseminator will have the most significant impact on the pregnancy rates.  相似文献   

6.
7.
Güvenc K  Reilas T  Katila T 《Theriogenology》2005,63(9):2504-2512
It is unclear whether AI of mares deep into the uterine horn causes more or less inflammation of the endometrium than conventional AI. Thus, we compared uterine inflammatory reactions of mares inseminated with two different doses of frozen-thawed semen into the tip of the uterine horn (UH) ipsilateral to the preovulatory follicle with those of mares inseminated into the uterine body (UB). Thirty-two mares were assigned to one of four groups (eight mares/group): UB20=AI into UB, 20 x 10(6)sperm/0.5 mL; UB200=AI into UB, 200 x 10(6)sperm/0.5 mL; UH20=AI into UH, 20 x 10(6)sperm/0.5 mL; UH200=AI into UH, 200 x 10(6)sperm/0.5 mL, and inseminated 24 h after hCG administration. Before and 24 h after AI, they were examined with ultrasonography for the presence of intrauterine fluid. At 24 h, uterine fluid samples were obtained first by absorbing fluid into a tampon and then by uterine lavage. Uterine fluid was examined for polymorphonuclear leukocytes (PMN) and bacteriology, and frozen for lysozyme and TIC (trypsin-inhibitor capacity) assays. Only three mares conceived, one in each of the following groups: UB200, UH20, and UH200. Mares in the UH20 group accumulated less intrauterine fluid (p<0.05) than those in the other groups, which had similar amounts. No significant differences in PMN numbers were detected in either tampon or lavage fluid. Enzyme levels between groups did not differ statistically, except for TIC, which was lowest in the UH200 group. Thus, deep uterine horn AI caused no greater inflammation or irritation than uterine body AI in normal mares 24 h after insemination.  相似文献   

8.
Two trials were conducted to investigate the effects of intrauterine infusion of PGE2 and uterine horn insemination on pregnancy rates in mares achieved by breeding with a suboptimal number of normal spermatozoa. Estrus was synchronized and mares were teased daily with a stallion to detect estrus. Mares in estrus were examined by transrectal palpation and ultrasonography to monitor follicular status. On the first day a 35-mm diameter follicle was present, hCG (1500 IU, iv) was administered and the mares were bred the next day. Mares (Trial 1, n = 34; Trial 2, n = 28) were inseminated with 25 million total spermatozoa from either a stallion with good semen quality (Trial 1) or poor semen quality (Trial 2). In each trial, mares were assigned to 1 of 4 treatment groups as follows: Group PGE-HI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; Group PGE-BI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body; Group SAL-HI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; or Group SAL-BI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body. After breeding, mares were examined daily by transrectal ultrasonography to confirm ovulation, and were re-examined 14 to 16 d after ovulation for pregnancy status. Data were analyzed by Chi-square. Overall pregnancy rates were 59% for stallion 1 and 29% for stallion 2. Group pregnancy rates did not differ for mares bred by either stallion (P > 0.10). Pregnancy rates were not altered by horn insemination for either stallion (P > 0.10). Intrauterine infusion of PGE2 improved pregnancy rate in mares bred by the stallion with good quality semen (P < 0.05), but did not alter pregnancy rate in mares bred by the stallion with poor quality semen (P > 0.10). Further research is warranted to determine if intrauterine infusion of PGE2 will enhance spermatozoal colonization of the oviduct and pregnancy rates in mares, and if PGE-treatment will improve pregnancy rates achieved by subfertile stallions.  相似文献   

9.
Pregnancy rates after frozen semen inseminations (AI), particularly in older and problem mares, are lower than after fresh semen AI. Uterine contractility and the inflammatory reaction after frozen semen insemination were studied in two groups of mares: the abnormal group comprised of 6 old barren mares categorized in biopsy category IIB or III, and the control group including 6 reproductively normal young maiden mares in biopsy category I or IIA. All 12 mares were inseminated in the first cycle with 2 mL of phosphate-buffered saline (PBS) and in their second cycle with 2 mL of frozen semen containing 800 x 10(6) spermatozoa. Before and 1, 2, 4, 8, and 20 to 24 h after this treatment, all mares were examined by ultrasonography for intrauterine fluid accumulations (IUFA). The examinations were videotaped to count the number of uterine contractions later. Uterine fluid was obtained by tampon before treatment, and by the tampon method followed by uterine lavage after the last examination. Fluids were cultured bacteriologically, and polymorphonuclear leukocytes (PMN) were counted. Trypsin-inhibitor capacity (TIC), lysozyme concentration, and beta-glucuronidase (BGase) and N-acetyl-beta-D-glucosaminidase (NAGase) activities were determined in frozen-thawed tampon and lavage fluids. Both treatments induced significant neutrophilia in the uterine lumen. Although PMN concentrations were numerically higher after frozen semen AI than after PBS-treatment, the difference was not significant. There was not any difference between the mare groups either. The amount of IUFA differed only in the normal group between frozen semen AI and PBS treatment, and between 0- and 24-h samples for frozen semen AI. Although abnormal mares showed consistently more fluid than normal mares, this difference was not significant. Uterine contractions and enzyme concentrations between groups did not differ. None of the variables showed significant differences between the normal and abnormal mares in their reaction to frozen semen AI.  相似文献   

10.
Practical application of sex-selected spermatozoa in the horse industry would be greatly improved by the ability to develop simplified methods for shipping, storing, and inseminating sex-selected spermatozoa. Acceptable pregnancy rates have been achieved using fresh sex-sorted stallion sperm, however many stallion owners are reluctant to send their stallions to the sorter location for collection during the breeding season. Furthermore, the technology would be more applicable if the hysteroscopic insemination technique was not necessary for adequate pregnancy rates. Hysteroscopic insemination requires expensive equipment and specially trained personnel. In the present study, stallion sperm were sex-sorted after being stored at either 5 degrees C or 15 degrees C for 18 h. Twenty million sex-sorted sperm were then inseminated using one of two insemination techniques: the hysteroscopic method or the rectally guided, deep-uterine technique. Results were determined based on 16-day pregnancy status. A first-cycle pregnancy rate of 72% (18/25) was achieved when sperm were shipped at 15 degrees C, sex-sorted, and then inseminated using the hysteroscopic method. With these results, it can be concluded that stallions are not necessary at the sorter location to achieve acceptable fertility with sex-sorted sperm. There was a tendency for more mares to become pregnant when sperm were shipped at 15 degrees C prior to sorting, when compared to shipment at 5 degrees C. Similarly, there was a tendency for more mares to become pregnant when hysteroscopic insemination was utilized, when compared to the rectally guided, deep-uterine technique. These trends suggest that if larger group numbers were available, significant differences between the treatments may be revealed.  相似文献   

11.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

12.
13.
Pregnancy rates with cooled equine semen can be unsatisfactory and show great variation. Information about first cycle pregnancy rates and pregnancy rates per cycle are often lacking from publicly available records. This retrospective cohort study was performed to evaluate the fertility of the Norwegian Coldblooded trotter. The aim of the study was to compare the breeding results after insemination with fresh, extended with those of cooled, shipped semen among Norwegian Coldblooded trotter mares. First cycle pregnancy rate was the main parameter used to measure fertility. Stud-books were collected from four studs from the years 2006–2010. Statistical analyses were done in Stata using Chi square test and multivariable analyses where different models were compared based on Akaike’s information criterion. First cycle pregnancy rate, seasonal pregnancy rate and foaling rate all showed significant differences (P < 0.0001) when comparing mares inseminated at stud with mares inseminated with cooled, shipped semen, favoring artificial insemination (AI) at stud. First cycle pregnancy rate was 55.1 % for mares inseminated at stud with fresh extended semen and 42.2 % for mares inseminated with cooled shipped semen. The overall pregnancy rate per cycle was 84.4 % for AI at stud and 66.9 % for cooled, shipped semen. The parameters stud, mare age, number of inseminations within an estrus cycle and individual stallion were also investigated for influence on fertility. Few retrospective studies include the parameter of first cycle pregnancy rates. Our study does not differ dramatically when comparing seasonal pregnancy rates and foaling rates with similar studies. Fertility parameters for the Norwegian Coldblooded trotter do not differ significantly from most other studies of Coldblooded mares and other mare breeds around the world. But the difference in fertility parameters between AI at stud to AI with cooled semen between our study and others, indicates that higher pregnancy rates in Norwegian Coldblooded trotter may be possible.  相似文献   

14.
It is probable that reduced pregnancy rates in mares bred to subfertile stallions is attributable, in part, to the reduced number of normal spermatozoa that colonize the oviduct. Administration of oxytocin stimulates both uterine and oviductal contractility. The hypothesis that oxytocin may enhance sperm transport to/into the oviducts, and thereby increase pregnancy rates, was tested in 2 trials. For both trials, fertile estrous mares with follicles > or = 35 mm in diameter were inseminated once at 24 h after administration of 1500 to 2000 U hCG. The inseminate dose was limited to 100 million spermatozoa in order to lower pregnancy rates and thus increase the chance of detecting a treatment effect. Pregnancy status was determined by transrectal ultrasound examination 14 to 16 d after insemination. In Trial 1, 49 mares were inseminated with 4 mL extended semen from 1 of 3 stallions (1 fertile and 2 subfertile males). Immediately after insemination, the mares were administered either 20 U oxytocin or 1 mL saline intravenously. In Trial 2, 51 mares were inseminated with 4 mL extended semen from 1 of 4 stallions (1 fertile and 1 subfertile male used in Trial 1, and 2 additional fertile males). Immediately after insemination, and again 30 min later, mares were administered either 5 U oxytocin or 0.25 mL saline intramuscularly. To test for effects of treatment with oxytocin and for the interaction between semen quality and treatment, a generalized linear mixed regression model was used that accounted for the split-plot design (treatment within stallions), the random effect of stallion, the fixed effect of semen quality, the binary outcome of a single breeding trial, and the varying number of trials per stallion/treatment groups. Three treatment protocols or regimens were used: placebo, 5 U oxytocin injected twice intramuscularly, and 20 units oxytocin injected twice intravenously. Semen was classified as high (fertile stallions) or low (subfertile stallions) quality. No interaction between semen quality and treatment was detected (P > 0.10). The pregnancy rate of mares treated with oxytocin immediately after insemination was 30% (15/50) compared with 50% (25/50) for mares treated with saline immediately after breeding. Administration of oxytocin did not affect pregnancy rates (P > 0.10).  相似文献   

15.
Metcalf ES 《Theriogenology》2007,68(3):423-428
In order to optimize the efficient use of cryopreserved stallion semen, recent research has focused on the minimum insemination dose of frozen-thawed spermatozoa required for maximum fertility rate. The results appear to be highly stallion-dependent. Factors such as the timing of AI with respect to ovulation, as well as the site of insemination within the mare's reproductive tract, also affect success in breeding with frozen-thawed semen. Since acceptable pregnancy rates can be achieved from insemination of mares with very low numbers of spermatozoa, increasing the number of insemination doses processed from a single ejaculate may prove more cost-effective to stallion owners.  相似文献   

16.
A breeding trial was conducted to evaluate the effect of insemination timing on the fertility of mares bred with frozen/thawed equine semen. One stallion and 60 reproductively sound, estrous-synchronized mares were included in the study. Mares were assigned to one of three groups (n = 20): 1) insemination with fresh semen every other day during estrus from detection of a 35-mm follicle until ovulation, 2) insemination with frozen/thawed semen every day during estrus from detection of a 35-mm follicle until ovulation or 3) insemination with frozen/thawed semen once, within 6 h after ovulation. Single-cycle 18-d pregnancy rates resulting from insemination with fresh semen (70%), preovulation insemination with frozen/thawed semen (60%) and postovulation insemination with frozen/thawed semen (55%) were not different (P > 0.05). Possibly, equivalent pregnancy rates could be achieved with frozen/thawed semen using either daily inseminations until ovulation occurs or frequent ovarian palpations with a single post-ovulation insemination. Further studies regarding the effect of insemination timing on stallion fertility are needed since the present investigation included only one stallion and a small number of mares.  相似文献   

17.
Uterine secretion was collected from five normal mares during estrus by the use of a tampon. In subsequent estrus cycles, mares were inseminated with 1 x 10(9) spermatozoa from a stallion of known fertility, and uterine secretion was collected randomly at 6, 12, and 24 hours after insemination. All mares had negative endometrial cytology before insemination. At the time of uterine secretion sampling, semen was collected from two stallions and extended with Kenney's extender to a concentration of 50 x 10(6) spermatozoa/mL. Extended semen was diluted 2:1 with uterine secretion; semen extender; and centrifuged uterine secretion (noncellular). Samples were kept at room temperature and sperm motion characteristics (corrected motility (CMOT), progressively motile spermatozoa (PMS), and mean path velocity (MPV) were evaluated using a computer-assisted semen analyzer every 40 minutes for a total of 4 hours. Sperm motion characteristics of spermatozoa were significantly better when incubated in semen extender compared to uterine secretion (P < 0.05). The CMOT and PMS were significantly better in uterine secretion collected before, compared to after AI with the lowest values observed in samples collected at 12 hours after breeding (P < 0.05). Sperm motion characteristics of spermatozoa incubated in centrifuged uterine secretion was only slightly suppressed compared to spermatozoa incubated in semen extender, suggesting that the altered motion characteristics were mostly due to the presence of polymorphonuclear neutrophils (PMNs) in the samples. It was concluded from this study that spermatozoa can survive in inflamed uterine secretion, but that sperm motion characteristics in vitro are altered.  相似文献   

18.
A suitable method for the cryopreservation of donkey semen would be very valuable for the ex situ management of genetic diversity in this species. This report uses a variety of observation and trials to evaluate the effect of cryoprotectants in per-cycle pregnancy rates (PC) in equids females (jennies (donkey) and mares (horse)). This was explored by (1) comparing the results of insemination of jennies and mares with cooled or frozen donkey semen, (2) examining the possible toxic effect of the cryoprotectant (CPA) glycerol in these two species and (3) studying alternative solutions. Donkey and horse semen was either used immediately, or cooled according to some steps of the pre-freezing procedure or frozen and thawed. The pre-freezing procedure included semen dilution, centrifugation, resuspension in milk or in INRA82+2% egg yolk+various % CPA (expressed as final concentrations in extended semen (v/v)) and then cooling to 4 degrees C. PC was similar in mares and jennies inseminated with donkey semen cooled to 4 degrees C in milk. However, the PC was significantly higher in mares than in jennies when donkey semen was frozen with 2.2% glycerol (36%, n=50 cycles vs. 11%, n=38 cycles; P<0.01). Increasing the concentrations of glycerol (0, 2.2, 3.5, 4.8%) before cooling stallion semen resulted in a progressive decrease in mare PC (87, 53, 53, 13% (n=15 cycles for each concentration); P<0.0001). The addition of 2.2% glycerol before cooling donkey semen decreased the PC measured in jennies to 0. The replacement of glycerol by 2% dimethylformamide increased the fertility obtained in jennies with cooled donkey semen (PC: 67%, n=12 cycles) but did not increase the fertility obtained with frozen-thawed donkey semen (PC: 11%, n=28 cycles with dimethylformamide vs. 0%, n=16 cycles with glycerol). In conclusion, this study clearly shows that the ability of jennies to conceive after AI with donkey frozen semen is lower than that of mares. Glycerol affects the fertility of donkey and stallion spermatozoa as early as during the pre-freezing procedure. In consequence, the glycerol level must be low in frozen equine semen to provide good fertility. The toxic dose of glycerol for donkey spermatozoa seems to be almost half that for stallion spermatozoa. Whether this greater sensitivity of donkey spermatozoa to glycerol is responsible for the low success of semen cryopreservation in jennies is not so obvious because replacement of glycerol by dimethylformamide was not much more effective in terms of fertility.  相似文献   

19.
Lyle SK  Ferrer MS 《Theriogenology》2005,64(3):572-579
The typical dose for insemination into the uterine body of the mare is > 300 x 10(6) progressively motile spermatozoa (PMS) and an insemination dose of > 200 x 10(6) PMS is recommended for frozen-thawed semen. Low-dose insemination techniques allow for a drastic reduction in the numbers of spermatozoa required to achieve pregnancy. Acceptable pregnancy rates can be achieved with doses ranging from 1 to 25 x 10(6) PMS in volumes ranging from 20 to 1000 microL. Two techniques have been described: hysteroscopic insemination and transrectally guided deep horn insemination using a pipette. Similar pregnancy rates can be attained by either method when 5 x 10(6) PMS are used. Hysteroscopic insemination may provide an advantage when the dose is 1-3 x 10(6) PMS. These techniques have the potential to make more efficient use of frozen-thawed or sex-sorted semen from certain stallions. The use of low-dose insemination to improve fertility of infertile stallions warrants further investigation.  相似文献   

20.
In six field trials, doses between 1.0 and 6.0 x 10(6) total sexed, frozen-thawed sperm were inseminated into the uterine body or bilaterally into the uterine horns of heifers and nursing Angus cows 12 or 24h after observed estrus. Except for one comparison in one trial in which uterine body insemination was slightly superior (P<0.05) to uterine horn insemination, there was no significant (P>0.1) difference between sites of semen deposition. Additionally, except for one small study with limited numbers, there was essentially no difference in pregnancy rates in the range between 1.5 and 6 x 10(6) sexed, frozen-thawed sperm per inseminate. Pregnancy rates with smaller doses of sexed sperm averaged about 75% of controls of 20 x 10(6) total frozen-thawed, unsexed sperm. While 1.0 x 10(6) sexed, frozen-thawed sperm per insemination dose resulted in decreased pregnancy rates compared to larger doses, the lesser fertility with sexed sperm could not be compensated by increasing sperm numbers in the range of 1.5-6 x 10(6) sperm per dose. Pregnancy rates with 2 x 10(6) sexed, frozen-thawed sperm per dose were not markedly less than control pregnancy rates with 20 x 10(6) frozen-thawed unsexed sperm/dose in well-managed herds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号