首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Among bony fishes, the ontogenetic sequence by which the actinopterygian scapulocoracoid develops has been well described, but that of the sarcopterygian scapulocoracoid is poorly known, as the majority of taxa are only known from fossils. To rectify this, the cartilaginous scapulocoracoid of the extant lungfish Neoceratodus forsteri is examined. In initial stages of its development, the scapulocoracoid of Neoceratodus has a simple rounded shape, and supports the glenoid fossa. It appears nearly contemporaneously with the proximal endochondral element (humerus) of the pectoral fin. Pectoral fin elements develop by segmentation from a continuous field of cartilaginous precursor cells extending distally from the glenoid region of the scapulocoracoid. Subsequent scapulocoracoid development produces a ventromedial process, which is not associated with this field of precursor cells. A dorsal process also develops outside this field. Thus, the scapulocoracoid of Neoceratodus may consist of at least two developmentally distinct regions; (1) the ventromedial being homologous with the coracoid of actinopterygians, tetrapods and other jawed vertebrates and (2) a smaller dorsal process, homologous to the scapular region. The two, together with the glenoid region, give an overall triangular shape. The scapulocoracoids of fossil lungfish and other sarcopterygian fishes are also triangular and are composed of scapular and coracoid regions, rather than the 'buttresses' associated with scapulocoracoids of the Actinopterygii and Tetrapoda.  相似文献   

2.
The Ratites (ostriches, emus, etc.) are thought to be neotenous descendants of flying birds, rather than primitive birds, even though they became a separate group early in the evolution of birds. This is because of the juvenile, rather than primitive, condition of the palate, skull-sutures and feathers. We report here that European starlings (Sturnus vulgaris) thyroidectomized soon after hatching also show neoteny, retaining many juvenile features (general morphology, palate, skull-sutures, feathers, behaviour), while at the same time becoming sexually mature. The juvenile characters were similar to those found in Ratites, suggesting that hypothyroidism may have been a factor in the evolution of the Ratites.  相似文献   

3.
Increased excavation of dinosaurs from China over the last two decades has enriched the record of Asian titanosauriform sauropods. However, the relationships of these sauropods remain contentious, and hinges on a few well-preserved taxa, such as Euhelopus zdanskyi. Here we describe a new sauropod, Yongjinglong datangi gen. nov. et sp. nov., from the Lower Cretaceous Hekou Group in the Lanzhou Basin of Gansu Province, northwestern China. Yongjinglong datangi is characterized by the following unique combination of characters, including seven autapomorphies: long-crowned, spoon-shaped premaxillary tooth; axially elongate parapophyses on the cervical vertebra; very deep lateral pneumatic foramina on the lateral surfaces of the cervical and cranial dorsal vertebral centra; low, unbifurcated neural spine fused with the postzygapophyses to form a cranially-pointing, triangular plate in a middle dorsal vertebra; an “XI”-shaped configuration of the laminae on the arches of the middle dorsal vertebrae; a very long scapular blade with straight cranial and caudal edges; and a tall, deep groove on the lateral surface of the distal shaft of the radius. The new specimen shares several features with other sauropods: a pronounced M. triceps longus tubercle on the scapula and ventrolaterally elongated parapophyses in its cervical vertebra as in Euhelopodidae. Based on phylogenetic analyses Yongjinglong datangi is highly derived within Titanosauria, which suggests either a remarkable convergence with more basal titanosauriform sauropods in the Early Cretaceous or a retention of plesiomorphic features that were lost in other titanosaurians. The morphology and remarkable length of the scapulocoracoid reveal an unusual relationship between the shoulder and the middle trunk: the scapulocoracoid spans over half of the length of the trunk. The medial, notch-shaped coracoid foramen and the partially fused scapulocoracoid synostosis suggest that the specimen is a subadult individual. This specimen sheds new light on the diversity of Early Cretaceous Titanosauriformes in China.  相似文献   

4.
During their embryogenesis, marsupials develop a unique structure, the shoulder arch, which provides the structural and muscle‐attachment support necessary for the newborn's crawl to the teat. One of the most pronounced and important aspects of the shoulder arch is an enlarged coracoid. After marsupial newborns reach the teat, the shoulder arch is remodeled and the coracoid is reduced to a small process on the scapula. Although an understanding of marsupial coracoid reduction has the potential to provide insights into both, marsupial evolution and the origin of mammals, little is known about the morphological and cellular processes controlling this process. To remedy this situation, this study examined the morphological and cellular mechanisms behind coracoid reduction in the gray short‐tailed opossum, Monodelphis domestica. A quantitative, morphometric study of shoulder girdle development revealed that the coracoid is reduced in size relative to other aspects of the shoulder girdle by growing at a slower rate. Using a series of molecular assays for cell death, no evidence was found for programmed cell death playing a role in the reduction of coracoid size in marsupials (in contrast to hypotheses of previous researchers). Although it is likely the case that coracoid growth is reduced through a relatively lower rate of cellular proliferation, differences in proliferative rates in the coracoid and scapula were not great enough to be quantified using standard molecular assays. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
A new genus and species of ground-hornbill are described from the Late Tertiary (Late Miocene) fluviative deposits in Hadzhidimovo (Hadzhidimovo-1, or Hadzhidimovo-Girizite locality), in southwestern Bulgaria. The cranial half of a scapula and the distal third of a femur have been recovered. The morphology distinguishes the specimen from the recent species of Bucorvus, the closest genus. Most interesting is the morphology of the scapula (the holotype), which differs considerably from the ground-hornbills in some structures (e.g. the clavicular joint) while being surprisingly similar in other structures (e.g. the humeral articular joint). The last peculiarity may indicate that the fossil species was a more primitive form having relatively poorer flying capacity in comparison to other ground-hornbills. This first record of Bucerotidae in Europe proves the occurrence of the family in the Tertiary of the western parts of the Eurasian continent. It came from the richest Bulgarian locality of the Hipparion fauna, from which ca. 36 species of large mammals and birds are now known.  相似文献   

6.
Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.  相似文献   

7.
Dromaeosauridae is the sister taxon of the Avialae; thus, an investigation of dromaeosaur shoulder girdle musculature and forelimb function provides substantial information regarding changes in the size and performance of the theropod shoulder girdle musculature leading to avian powered flight. Twenty-two shoulder girdle muscles were reconstructed for the dromaeosaurid shoulder apparatus, based on phylogenetic inference, which involves the comparison of lepidosaurian, crocodilian and avian musculature, and extrapolatory inference, which involves a secondary comparison with functional analogues of theropods. In addition to these comparative methodologies, osteological correlates of shoulder musculature preserved in eumaniraptorans are identified, and comparisons with those of extant archosaurs allow these muscles to be definitively inferred in dromaeosaurids. This muscle reconstruction provides a foundation for subsequent investigation of differences in muscular attachment and function, based on scapulocoracoid morphology, across the theropod lineage leading to birds.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 301–344.  相似文献   

8.
9.
The mammalian scapula is a complex morphological structure, composed of two ossification plates that fuse into a single structure. Most studies on morphological differentiation in the scapula have considered it to be a simple, spatially integrated structure, primarily influenced by the important locomotor function presented by this element. We used recently developed geometric morphometric techniques to test and quantify functional and phylogenetic influences on scapular shape variation in fossil and extant xenarthran mammals. The order Xenarthra is well represented in the fossil record and presents a stable phylogenetic hypothesis for its genealogical history. In addition, its species present a large variety of locomotor habits. Our results show that approximately half of the shape variation in the scapula is due to phylogenetic heritage. This is contrary to the view that the scapula is influenced only by functional demands. There are large‐scale shape transformations that provide biomechanical adaptation for the several habits (arboreality, terrestriality, and digging), and small scale‐shape transformations (mostly related to the coracoid process) that are not influenced by function. A nonlinear relationship between morphometric and phylogenetic distances indicates the presence of a complex mixture of evolutionary processes acting on shape differentiation of the scapula. J. Morphol. 241:251–263, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Phylogenetic analyses frequently resolve the extinct group Placodermi at the base of the clade of jawed fishes (traditionally known as the Gnathostomata), with the jawless fish group Osteostraci as sister taxon to this clade. Both gnathostomes and osteostracans possess pectoral fins supported by a radial(s) articulating on a cartilaginous scapulocoracoid. Blood vessels and nerves pass by or through the scapulocoracoid to supply the musculature of the pectoral fin, and in the Osteostraci also pass through the postbranchial lamina backing the gill chamber before reaching the scapulocoracoid. This course also characterizes the placoderm group Antiarchi. Other placoderms retain the condition typical of other jawed fishes in which the scapulocoracoid, as well as the subclavian veins and arteries, are entirely posterior to the back wall of the gill chamber, lying within the internal region of the trunkshield. These observations suggest that these placoderm groups are more closely related to other jawed fishes than are the Antiarchi, challenging the monophyly of the Placodermi.  相似文献   

11.
A synoptic review of the discoveries and studies of Chinese Mesozoic birds is provided in this paper.40Ar/39Ar dating of several bird-bearing deposits in the Jehol Group has established a geochronological framework for the study of the early avian radiation.Chinese Mesozoic birds had lasted for at least 11 Ma during about 131 Ma and 120 Ma (Barremian to Aptian)of the middle and late Early Cretaceous,respectively.In order to further evaluate the change of the avian diversity in the Jehol Biota,six new orders and families are erected based on known genera and species,which brings the total number of orders of Chinese Mesozoic birds to 15 and highlights a remarkable radiation ever since the first appearante of birds in the Late Jurassic.Chinese Early Cretaceous birds had experienced a significant differentiation in morphology,flight,diet and habitat.Further examination of the foot of Jeholornis suggests this bird might not have possessed a fully reversed hallux.However,the attachment of metatarsal Ⅰ to the medial side of metatarsal Ⅱ does not preclude trunk climbing,a pre-adaptation for well developed perching life of early birds.Arboreality had proved to be a key adaptation in the origin and early evolution of bird flight,and the adaptation to lakeshore environment had played an equally important role in the origin of omithurine birds and their near-modern flight skill.Many Chinese Early Cretaceous birds had preserved the direct evidence of their diet,showing that the most primitive birds were probably mainly insectivorous and that specialized herbivorous or carnivorous (e.g.,piscivorous)dietary adaptation had appeared only in later advanced forms.The only known Early Cretaceous bird embryo fossil has shown that precocial birds had occurred prior to altricial birds in avian history,and the size of the embryo and other analysis indicate it probably had a short incubation period.Leg feathers probably have a wide range of distribution in early birds,further suggesting that leg feathers had played a key role in the beginning stage of the flight of birds.Finally,the Early Cretaceous avian radiation can be better understood against the background of their unique ecosystem.The advantage of birds in the competitions with other vertebrate groups such as pterosaurs had probably not only resulted in the rapid differentiation and radiation of birds but also the worldwide spreading of pterosaurs and other vertebrates from East Asia in the Early Cretaceous.  相似文献   

12.
This study aims at demonstrating that the Bathynellacea arose by neoteny from a zoea-like ancestor (“Zoea Theory”). Bathynellacea basically have a larval morphology. Their post-embryonic development passes through phases which are directly comparable with some in the development of primitive Eucarida. These phases are called the parazoeal and bathynellid phase, and correspond to the protozoeal and zoeal phase of Penaeidea, respectively. Running initially parallel to that of Penaeidea, the development of the Bathynellacea breaks off precociously. They reach sexual maturity at a stage which, in the Penaeidea, is followed by metamorphosis. There are reasons to assume that the development of all Syncarida originally passed through a series of free-living larval stages and underwent metamorphosis. The bathynellaceans reach adulthood at a stage which corresponds to the last larval stage of their ancestor. The ecological path to interstitial life of the Bathynellacea and the bearing of the “Zoea Theory” upon views as to their phylogenetic position are discussed. The classical example of a group of crustaceans thought to have arisen by neoteny, the Cladocera, is critically examined and found to be in need of reevaluation.  相似文献   

13.
Abstract: We describe well‐preserved remains of the Pelagornithidae (bony‐toothed birds) from the middle Eocene of Belgium, including a sternum, pectoral girdle bones and humeri of a single individual. The specimens are tentatively assigned to Macrodontopteryx oweni Harrison and Walker, 1976 , which has so far only been known from the holotype skull and a referred proximal ulna. Another species, about two times larger, is represented by an incomplete humerus and tentatively identified as Dasornis emuinus ( Bowerbank, 1854 ). The fossils provide critical new data on the osteology of the pectoral girdle of bony‐toothed birds. For the first time, the sternum of one of the smaller species is preserved, and this bone exhibits a more plesiomorphic morphology than the recently described sternum of the giant Miocene taxon Pelagornis. The coracoid resembles that of the Diomedeidae (albatrosses) in overall morphology, but because bony‐toothed birds lack apomorphies of the Procellariiformes, the similarities are almost certainly owing to convergence. Bony‐toothed birds were often compared with the ‘Pelecaniformes’ by previous authors, who especially made comparisons with the Sulidae (gannets and boobies). However, the coracoid distinctly differs from that of extant ‘pelecaniform’ birds, and the plesiomorphic presence of a foramen nervi supracoracoidei as well as the absence of a well‐delimited articulation facet for the furcula supports a position outside the Suloidea, the clade to which the Sulidae belong.  相似文献   

14.
Abstract:  We report on a new Early Cretaceous bird from China that sheds significant light on the evolutionary transition between primitive birds with a long bony tail and those with a short tail ending in a pygostyle. A cladistic analysis of basal birds supports the placement of the new fossil as the sister-taxon of all pygostylians. Possessing a unique hand morphology with a phalangeal formula of 2-3-3-x-x and a reduced number of caudal vertebrae lacking a pygostyle, the new specimen reveals anatomical information previously unknown and increases the taxonomic diversity of primitive, non-pygostylian birds. We infer from the specimen that during the evolution of the avian tail, a decrease in relative caudal length and number of vertebrae preceded the distal fusion of caudals into a pygostyle.  相似文献   

15.
In this study, the forelimb of 12 species of tupaiids was analyzed functionally and compared to that of other archontan mammals. Several differences that relate to differential substrate use were found in the forelimb morphology of tupaiids. These differences included shape of the scapula, length and orientation of the coracoid process, size of the lesser tuberosity, shape of the capitulum, length of the olecranon process, and shape of the radial head and central fossa. The forelimb of the arboreal Ptilocercus lowii, the only ptilocercine, is better adapted for arboreal locomotion, while that of tupaiines is better adapted for terrestrial (or scansorial) locomotion. While the forelimb of the arboreal Ptilocercus appears to be habitually flexed and exhibits more mobility in its joints, a necessity for movement on uneven, discontinuous arboreal supports, all tupaiines are characterized by more extended forelimbs and less mobility in their joints. These restricted joints limit movements more to the parasagittal plane, which increases the efficiency of locomotion on a more even and continuous surface like the ground. Even the most arboreal tupaiines remain similar to their terrestrial relatives in their forelimb morphology, which probably reflects the terrestrial ancestry of Tupaiinae (but not Tupaiidae). The forelimb of Urogale everetti is unique among tupaiines in that it exhibits adaptations for scratch-digging. Several features of the tupaiid forelimb reflect the arboreal ancestry of Tupaiidae and it is proposed that the ancestral tupaiid was arboreal like Ptilocercus. Also, compared to the forelimb character states of tupaiines, those of Ptilocercus are more similar to those of other archontans and it is proposed that the attributes of the forelimb of Ptilocercus are primitive for the Tupaiidae. Hence, Ptilocercus should be considered in any phylogenetic analysis that includes Scandentia.  相似文献   

16.
The development of the scapula was studied in embryonic and postnatal specimens of Monodelphis domestica and perinatal specimens of Philander opossum, Caluromys philander, and Sminthopsis virginiae using histological sections and 3D reconstructions. Additionally, macerated skeletons of postnatal M. domestica were examined. This study focused on the detachment of the scapulocoracoid from the sternum and on the acquisition of a supraspinous fossa, a supraspinatus muscle, and a scapular spine, all these events associated with the origin of the therian shoulder girdle. In none of the specimens is there a continuity of the cartilaginous scapulocoracoid with the sternum, even though the structures are in close proximity, especially in S. virginiae. At birth, the first rib laterally presents a pronounced boss that probably contacts the humerus during certain movements. Only the acromial portion of the scapular spine, which originates from the anterior margin of the scapular blade, is preformed in cartilage. The other portion is formed by appositional bone ("Zuwachsknochen"), which expands from the perichondral ossification of the scapula into an intermuscular aponeurosis between the supra- and infraspinous muscles. This intermuscular aponeurosis inserts more or less in the middle of the lateral surface of the developing scapula. Thus, the floor of the supraspinous fossa is present from the beginning of scapular development, simultaneously with the infraspinous fossa. The homology of the therian spine with the anterior border of the sauropsid and monotreme scapula is questioned. We consider the dorsal portion (as opposed to the ventral or acromial portion) of the scapular spine a neomorphic structure of therian mammals.  相似文献   

17.
辽宁北票地区一新的甲龙化石   总被引:4,自引:0,他引:4  
记述了辽宁省北票地区的甲龙化石一新属新种 :步氏克氏龙 (Crichtonsaurusbohlinigen .etsp.nov.)。其主要特征是 :中等大小的甲龙 ,下颌骨较低 ,外侧无骨甲覆盖 ;牙齿小 ,齿冠上有垂直向的棱嵴和边缘小齿 ,齿环发育不全 ,有愈合的颈甲板 ,膜质骨甲形态多样 ,尾后部的椎体相连结成棒状 ,两侧有排列对称的甲板。步氏克氏龙的发现对探讨北票地区晚中生代地层的划分和时代归属 ,以及对甲龙类的系统演化和地理分布均具有重要的意义。  相似文献   

18.
19.
To date, all statements about evolutionary morphological transformation in Crocodylia have essentially been based on qualitative observations. In the present study, we assessed the morphological variation and covariation (integration) between the scapula, coracoid, humerus, radius, and ulna of 15 species of Crocodylidae, Alligatoridae, and Gavialis + Tomistoma using three‐dimensional geometric morphometrics. The results obtained reveal that the variation of elements within species (intraspecific) is large. However, despite this variability, variation across species (interspecific) is mainly concentrated in two dimensions where the disparity is constrained: ‘robusticity’ and ‘twist’ (forelimbs) and ‘robusticity’ and ‘flexion’ (pectoral girdle). Robusticity (first dimension of variation) embodies a set of correlated geometrical features such as the broadening of the girdle heads and blades, or the enlargement of proximal and distal bone ends. The twist is related to the proximal and/or distal epiphyses in the forelimb elements, and flexion of the scapula and coracoid blades comprises the second dimension of variation. In all crocodylians, forelimb integration is characterized by the strong correlations of a humerus–ulna–radius triad and by a radius–ulna pair, thus forming a tight forelimb module. Unexpectedly, we found that the humerus and coracoid form the most integrated pair, whereas the scapula is a more variable and relatively independent element. The integration pattern of the humerus–coracoid pair distinguishes a relatively robust configuration in alligatorids from that of the remainder groups. The patterns of variation and integration shared by all the analyzed species have been interpreted as an inherited factor, suggesting that developmental and functional requirements would have interacted in the acquisition of a semi‐aquatic and versatile locomotion at the Crocodylia node at least 65 Mya. Our findings highlight the need to incorporate the humerus–coracoid pair in biodynamic and biomechanical studies. © 2012 The Linnean Society of London  相似文献   

20.
The function of the coracoacromial ligament was investigated in 8 dissecting-room scapulae. Strain gauges were attached around the coracoid process and the acromion, and tension (50 or 100 N) applied through the remaining muscle stumps. The results showed that, after division of the ligament, significantly more distortion could be measured in the acromion than in the coracoid process, which suggests that the 'stay' effect of the coracoacromial ligament is stronger for the former. Since the degree of distortion is largely dependent on the direction of pull, the ligament is interpreted as a dynamic brace between the two processes of the scapula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号