首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A metaproteomic survey of surface coastal waters near Palmer Station on the Antarctic Peninsula, West Antarctica, was performed, revealing marked differences in the functional capacity of summer and winter communities of bacterioplankton. Proteins from Flavobacteria were more abundant in the summer metaproteome, whereas winter was characterized by proteins from ammonia-oxidizing Marine Group I Crenarchaeota. Proteins prevalent in both seasons were from SAR11 and Rhodobacterales clades of Alphaproteobacteria, as well as many lineages of Gammaproteobacteria. The metaproteome data were used to elucidate the main metabolic and energy generation pathways and transport processes occurring at the microbial level in each season. In summer, autotrophic carbon assimilation appears to be driven by oxygenic photoautotrophy, consistent with high light availability and intensity. In contrast, during the dark polar winter, the metaproteome supported the occurrence of chemolithoautotrophy via the 3-hydroxypropionate/4-hydroxybutyrate cycle and the reverse tricarboxylic acid cycle of ammonia-oxidizing archaea and nitrite-oxidizing bacteria, respectively. Proteins involved in nitrification were also detected in the metaproteome. Taurine appears to be an important source of carbon and nitrogen for heterotrophs (especially SAR11), with transporters and enzymes for taurine uptake and degradation abundant in the metaproteome. Divergent heterotrophic strategies for Alphaproteobacteria and Flavobacteria were indicated by the metaproteome data, with Alphaproteobacteria capturing (by high-affinity transport) and processing labile solutes, and Flavobacteria expressing outer membrane receptors for particle adhesion to facilitate the exploitation of non-labile substrates. TonB-dependent receptors from Gammaproteobacteria and Flavobacteria (particularly in summer) were abundant, indicating that scavenging of substrates was likely an important strategy for these clades of Southern Ocean bacteria. This study provides the first insight into differences in functional processes occurring between summer and winter microbial communities in coastal Antarctic waters, and particularly highlights the important role that ‘dark'' carbon fixation has in winter.  相似文献   

2.
SAR11 bacteria are abundant in marine environments, often accounting for 35% of total prokaryotes in the surface ocean, but little is known about their involvement in marine biogeochemical cycles. Previous studies reported that SAR11 bacteria are very small and potentially have few ribosomes, indicating that SAR11 bacteria could have low metabolic activities and could play a smaller role in the flux of dissolved organic matter than suggested by their abundance. To determine the ecological activity of SAR11 bacteria, we used a combination of microautoradiography and fluorescence in situ hybridization (Micro-FISH) to measure assimilation of (3)H-amino acids and [(35)S]dimethylsulfoniopropionate (DMSP) by SAR11 bacteria in the coastal North Atlantic Ocean and the Sargasso Sea. We found that SAR11 bacteria were often abundant in surface waters, accounting for 25% of all prokaryotes on average. SAR11 bacteria were typically as large as, if not larger than, other prokaryotes. Additionally, more than half of SAR11 bacteria assimilated dissolved amino acids and DMSP, whereas about 40% of other prokaryotes assimilated these compounds. Due to their high abundance and activity, SAR11 bacteria were responsible for about 50% of amino acid assimilation and 30% of DMSP assimilation in surface waters. The contribution of SAR11 bacteria to amino acid assimilation was greater than would be expected based on their overall abundance, implying that SAR11 bacteria outcompete other prokaryotes for these labile compounds. These data suggest that SAR11 bacteria are highly active and play a significant role in C, N, and S cycling in the ocean.  相似文献   

3.
SAR11 bacteria are abundant in marine environments, often accounting for 35% of total prokaryotes in the surface ocean, but little is known about their involvement in marine biogeochemical cycles. Previous studies reported that SAR11 bacteria are very small and potentially have few ribosomes, indicating that SAR11 bacteria could have low metabolic activities and could play a smaller role in the flux of dissolved organic matter than suggested by their abundance. To determine the ecological activity of SAR11 bacteria, we used a combination of microautoradiography and fluorescence in situ hybridization (Micro-FISH) to measure assimilation of 3H-amino acids and [35S]dimethylsulfoniopropionate (DMSP) by SAR11 bacteria in the coastal North Atlantic Ocean and the Sargasso Sea. We found that SAR11 bacteria were often abundant in surface waters, accounting for 25% of all prokaryotes on average. SAR11 bacteria were typically as large as, if not larger than, other prokaryotes. Additionally, more than half of SAR11 bacteria assimilated dissolved amino acids and DMSP, whereas about 40% of other prokaryotes assimilated these compounds. Due to their high abundance and activity, SAR11 bacteria were responsible for about 50% of amino acid assimilation and 30% of DMSP assimilation in surface waters. The contribution of SAR11 bacteria to amino acid assimilation was greater than would be expected based on their overall abundance, implying that SAR11 bacteria outcompete other prokaryotes for these labile compounds. These data suggest that SAR11 bacteria are highly active and play a significant role in C, N, and S cycling in the ocean.  相似文献   

4.
The SAR11 clade, here represented by Candidatus Pelagibacter ubique, is the most successful group of bacteria in the upper surface waters of the oceans. In contrast to previous studies that have associated the 1.3 Mb genome of Ca. Pelagibacter ubique with the less than 1.5 Mb genomes of the Rickettsiales, our phylogenetic analysis suggests that Ca. Pelagibacter ubique is most closely related to soil and aquatic Alphaproteobacteria with large genomes. This implies that the SAR11 clade and the Rickettsiales have undergone genome reduction independently. A gene flux analysis of 46 representative alphaproteobacterial genomes indicates the loss of more than 800 genes in each of Ca. Pelagibacter ubique and the Rickettsiales. Consistent with their different phylogenetic affiliations, the pattern of gene loss differs with a higher loss of genes for repair and recombination processes in Ca. Pelagibacter ubique as compared with a more extensive loss of genes for biosynthetic functions in the Rickettsiales. Some of the lost genes in Ca. Pelagibacter ubique, such as mutLS, recFN, and ruvABC, are conserved in all other alphaproteobacterial genomes including the small genomes of the Rickettsiales. The mismatch repair genes mutLS are absent from all currently sequenced SAR11 genomes and also underrepresented in the global ocean metagenome data set. We hypothesize that the unique loss of genes involved in repair and recombination processes in Ca. Pelagibacter ubique has been driven by selection and that this helps explain many of the characteristics of the SAR11 population, such as the streamlined genomes, the long branch lengths, the high recombination frequencies, and the extensive sequence divergence within the population.  相似文献   

5.
The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique) genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF)-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14)C-labeled compounds to (14)CO(2) indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT), trimethylamine (TMA), trimethylamine N-oxide (TMAO), and dimethylsulfoniopropionate (DMSP) were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14)C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35%) than of C1 compounds (2-6%) into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2) in the upper ocean.  相似文献   

6.

Background

According to the endosymbiont hypothesis, the mitochondrial system for aerobic respiration was derived from an ancestral Alphaproteobacterium. Phylogenetic studies indicate that the mitochondrial ancestor is most closely related to the Rickettsiales. Recently, it was suggested that Candidatus Pelagibacter ubique, a member of the SAR11 clade that is highly abundant in the oceans, is a sister taxon to the mitochondrial-Rickettsiales clade. The availability of ocean metagenome data substantially increases the sampling of Alphaproteobacteria inhabiting the oxygen-containing waters of the oceans that likely resemble the originating environment of mitochondria.

Methodology/Principal Findings

We present a phylogenetic study of the origin of mitochondria that incorporates metagenome data from the Global Ocean Sampling (GOS) expedition. We identify mitochondrially related sequences in the GOS dataset that represent a rare group of Alphaproteobacteria, designated OMAC (Oceanic Mitochondria Affiliated Clade) as the closest free-living relatives to mitochondria in the oceans. In addition, our analyses reject the hypothesis that the mitochondrial system for aerobic respiration is affiliated with that of the SAR11 clade.

Conclusions/Significance

Our results allude to the existence of an alphaproteobacterial clade in the oxygen-rich surface waters of the oceans that represents the closest free-living relative to mitochondria identified thus far. In addition, our findings underscore the importance of expanding the taxonomic diversity in phylogenetic analyses beyond that represented by cultivated bacteria to study the origin of mitochondria.  相似文献   

7.
Eddies are mesoscale oceanographic features (~ 200 km diameter) that can cause transient blooms of phytoplankton by shifting density isoclines in relation to light and nutrient resources. To better understand how bacterioplankton respond to eddies, we examined depth‐resolved distributions of bacterial populations across an anticyclonic mode‐water eddy in the Sargasso Sea. Previous work on this eddy has documented elevated phytoplankton productivity and diatom abundance within the eddy centre with coincident bacterial productivity and biomass maxima. We illustrate bacterial community shifts within the eddy centre, differentiating populations uplifted along isopycnals from those enriched or depleted at horizons of enhanced bacterial and primary productivity. Phylotypes belonging to the Roseobacter, OCS116 and marine Actinobacteria clades were enriched in the eddy core and were highly correlated with pigment‐based indicators of diatom abundance, supporting developing hypotheses that members of these clades associate with phytoplankton blooms. Typical mesopelagic clades (SAR202, SAR324, SAR406 and SAR11 IIb) were uplifted within the eddy centre, increasing bacterial diversity in the lower euphotic zone. Typical surface oligotrophic clades (SAR116, OM75, Prochlorococcus and SAR11 Ia) were relatively depleted in the eddy centre. The biogeochemical context of a bloom‐inducing eddy provides insight into the ecology of the diverse uncultured bacterioplankton dominating the oligotrophic oceans.  相似文献   

8.
A systematic investigation of marine pigmented heterotrophic bacteria (PHB) based on the cultivation method and sequencing analysis of 16S rRNA genes was conducted in Chinese coastal and shelf waters and the Pacific Ocean. Both the abundance of PHB and the ratio of PHB to CFU decreased along trophic gradients from coastal to oceanic waters, with the highest values of 9.9 x 10(3) cell mL(-1) and 39.6%, respectively, in the Yangtze River Estuary. In contrast to the total heterotrophic bacteria (TB) and CFU, which were present in the whole water column, PHB were primarily confined to the euphotic zone, with the highest abundance of PHB and ratio of PHB to CFU occurring in surface water. In total, 247 pigmented isolates were obtained during this study, and the phylogenetic analysis showed a wide genetic diversity covering 25 genera of six phylogenetic classes: Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacilli, Flavobacteria and Sphingobacteria. PHB belonging to Alphaproteobacteria, Flavobacteria and Sphingobacteria were obtained mainly from the South China Sea and East China Sea; PHB from the Pacific Ocean water were predominantly affiliated with Gammaproteobacteria, and most isolates from the Yangtze River Estuary fell into the classes Actinobacteria and Bacilli. The isolates exhibited various colours (e.g. golden, yellow, red, pink and orange), with genus or species specificity. Furthermore, the pigment of PHB cells absorbed light mainly in the wavelength range between 450 and 550 nm. In conclusion, our work has revealed that PHB with broad genetic diversity are widely distributed in the marine environment, and may account for up to 39.6% of culturable bacteria, equivalent to 1.4% of the total microbial community. This value might even be underestimated because it is probable that not all pigmented bacteria were isolated. Their abundance and genetic distribution are heavily influenced by environmental properties, such as light and nutrition, suggesting that they have important roles in the marine ecosystem, especially in the absorption of visible light.  相似文献   

9.
A quantitative PCR assay for the SAR11 clade of marine Alphaproteobacteria was applied to nucleic acids extracted from monthly depth profiles sampled over a 3-year period (2004–2007) at the open-ocean Station ALOHA (A Long-term Oligotrophic Habitat Assessment; 22°45'N, 158°00'W) in the oligotrophic North Pacific Ocean. This analysis revealed a high contribution (averaging 36% of 16S rRNA gene copies) of SAR11 to the total detected 16S rRNA gene copies over depths ranging from the surface layer to 4000 m, and revealed consistent spatial and temporal variation in the relative abundance of SAR11 16S rRNA gene copies. On average, a higher proportion of SAR11 rRNA gene copies were detected in the photic zone (< 175 m depth; mean = 38%) compared with aphotic (> 175 m depth; mean = 30%), and in the winter months compared with the summer (mean =  44% versus 33%, integrated over 175 m depth). Partial least square to latent structure projections identified environmental variables that correlate with variation in the absolute abundance of SAR11, and provided tools for developing a predictive model to explain time and depth-dependent variations in SAR11. Moreover, this information was used to hindcast temporal dynamics of the SAR11 clade between 1997 and 2006 using the existing HOT data set, which suggested that interannual variations in upper ocean SAR11 abundances were related to ocean-climate variability such as the El Niño Southern Oscillation.  相似文献   

10.
Although the SAR11 clade of the Alphaproteobacteria represents the most abundant and ubiquitous bacterioplankton in the ocean, very few laboratories have successfully cultured SAR11 cells. All of the SAR11 strains isolated thus far have been retrieved from the Oregon coast and the Sargasso Sea. In this study, a modified dilution-to-extinction culturing with prolonged incubation at low temperature was applied in an effort to cultivate major bacterioplankton lineages in the East Sea, Western Pacific Ocean. Five to 10 cells were inoculated into each well of 48-well plates, followed by the incubation of the plates at 10 °C for 4, 8, 20, and 24 weeks. Among a total of 35 isolated strains, 18 strains assigned to the SAR11 clade were isolated after 8, 20, and 24 weeks of incubation, whereas no SAR11 cells were detected in the samples after 4 weeks of incubation. The SAR11 isolates, noticeably, comprised 64–82% of the total isolates from the plates incubated for 20 and 24 weeks. Extinction cultures belonging to the Roseobacter , OM43, and SAR92 clades were also cultivated. The results of this study suggest that long-term incubation at low temperatures might prove an alternative for the efficient cultivation of new variants of the members of the SAR11 clade.  相似文献   

11.
The abundance, spatial distribution and diversity of class Flavobacteria were investigated in the Southern Ocean euphotic zone across a latitudinal transect and in the ice pack off Eastern Antarctica. Surface seawater samples filter-fractionated into 0.8 mum particulate and 0.2 m planktonic fractions were investigated with different molecular techniques. The abundance of particle-associated Flavobacteria, ascertained with real-time PCR and DGGE band analysis using Flavobacteria-specific primers, was found to be significantly higher in Polar Front Zone (PFZ) and Antarctic Zone (AZ) water samples than in nutrient limited Temperate Zone (TZ) and Sub-Antarctic Zone (SAZ) waters. Abundance of particle-associated Flavobacteria correlated positively with seawater chlorophyll a and nutrient concentrations, suggesting that increased Flavobacteria abundance may relate to enhanced primary production in the PFZ and AZ. This is supported by comparison of DGGE profiles that demonstrated significant differences in the total Flavobacteria community structure and 16S rRNA gene diversity between samples from the PFZ and AZ and those from TZ and SAZ. Sequence analysis revealed a broad diversity amongst class Flavobacteria in the Southern Ocean with several Flavobacteria clades detected in PFZ and AZ waters not detected in TZ and SAZ waters that putatively represent psychrophilic taxa. Sequence data included a large, so far uncultivated, cosmopolitan phylogenetic clade ("DE cluster 2") that is distributed throughout the Southern Ocean.  相似文献   

12.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

13.
A procedure was developed for harvesting gram quantities of microbial biomass from oligotrophic waters, when mixed populations are present in low abundance. Picoplankton from Atlantic Ocean (Hydrostation S, Sargasso Sea) and Pacific Ocean (Aloha Station) sites were collected in a three-stage process: (i) collection of seawater through an intake covered with 10-microns-pore Nytex; (ii) concentration by a tangential flow filtration device equipped with 10 ft2 (0.929 m2) of 0.1-micron-pore fluorocarbon membrane; (iii) collection of cells from concentrate by centrifugation. The overall efficiency of picoplankton recovery was at least 37%. The cellular morphotypes recovered matched those of the original population. DNA was prepared from frozen cell pellets by enzymatic digestion, solvent extraction, and isopycnic centrifugation. As indicated by the binding of kingdom-specific hybridization probes to the purified DNA, the Sargasso Sea picoplankton in this collection were largely eubacteria.  相似文献   

14.
Bacterial assemblages from subsurface (100 m depth), meso- (200-1000 m depth) and bathy-pelagic (below 1000 m depth) zones at 10 stations along a North Atlantic Ocean transect from 60°N to 5°S were characterized using massively parallel pyrotag sequencing of the V6 region of the 16S rRNA gene (V6 pyrotags). In a dataset of more than 830,000 pyrotags, we identified 10,780 OTUs of which 52% were singletons. The singletons accounted for less than 2% of the OTU abundance, whereas the 100 and 1000 most abundant OTUs represented 80% and 96% respectively of all recovered OTUs. Non-metric Multi-Dimensional Scaling and Canonical Correspondence Analysis of all the OTUs excluding the singletons revealed a clear clustering of the bacterial communities according to the water masses. More than 80% of the 1000 most abundant OTUs corresponded to Proteobacteria of which 55% were Alphaproteobacteria, mostly composed of the SAR11 cluster. Gammaproteobacteria increased with depth and included a relatively large number of OTUs belonging to Alteromonadales and Oceanospirillales. The bathypelagic zone showed higher taxonomic evenness than the overlying waters, albeit bacterial diversity was remarkably variable. Both abundant and low-abundance OTUs were responsible for the distinct bacterial communities characterizing the major deep-water masses. Taken together, our results reveal that deep-water masses act as bio-oceanographic islands for bacterioplankton leading to water mass-specific bacterial communities in the deep waters of the Atlantic.  相似文献   

15.
16.
17.
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.  相似文献   

18.
Previous studies have demonstrated that Candidatus Pelagibacter ubique, a member of the SAR11 clade, constitutively expresses proteorhodopsin (PR) proteins that can function as light-dependent proton pumps. However, exposure to light did not significantly improve the growth rate or final cell densities of SAR11 isolates in a wide range of conditions. Thus, the ecophysiological role of PR in SAR11 remained unresolved. We investigated a range of cellular properties and here show that light causes dramatic changes in physiology and gene expression in Cand. P. ubique cells that are starved for carbon, but provides little or no advantage during active growth on organic carbon substrates. During logarithmic growth there was no difference in oxygen consumption by cells in light versus dark. Energy starved cells respired endogenous carbon in the dark, becoming spheres that approached the minimum predicted size for cells, and produced abundant pili. In the light, energy starved cells maintained size, ATP content, and higher substrate transport rates, and differentially expressed nearly 10% of their genome. These findings show that PR is a vital adaptation that supports Cand. P. ubique metabolism during carbon starvation, a condition that is likely to occur in the extreme conditions of ocean environments.  相似文献   

19.
Isolation and characterization of marine oligotrophic bacteria   总被引:1,自引:0,他引:1  
A significant part of the world ocean is characterized by low absolute nutrients and chlorophyll concentrations. In these oligotrophic environments, bacteria are very abundant and play a vital role in the remineralization of the dissolved organic matter. Bacteria adapted to oligotrophic waters differ from those adapted to richer environments by some genetic and metabolic characteristics. Culture techniques in bacteriology are based on rich media and do not allow the growth of most marine bacteria. New techniques have been developed for the culture of oligotrophic bacteria, which allow to isolate unknown bacteria. Pelagibacter ubique and Sphingopyxis alaskensis belong to these bacteria recently isolated from the marine environment and their study yielded better understanding of how marine bacteria adapt to oligotrophic conditions.  相似文献   

20.
Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi: While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3600 m in the Atlantic Ocean and to 4000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (+/-5.7%) of all DNA-containing bacterioplankton between 500 and 4000 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号