首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Thrombospondin-1 (TSP-1), an extracellular matrix protein, has a multimodular structure and each domain specifies a distinct biological function through interaction with a specific ligand. In this study we found that exogenously added TSP-1 inhibits phorbol myristate acetate (PMA)/LPS-induced homotypic aggregation of human monocytic U937 cells, whereas the 70-kDa fragment of TSP-1 generated by the proteolytic cleavage of the intact molecule promotes the homotypic aggregation. The aggregation was also inhibited by anti-CD47 mAb or the 4N1K peptide, of which sequence is derived from the CD47-binding site of TSP-1 and absent in the 70-kDa fragment. In contrast, the augmented cell aggregation by the 70-kDa fragment was hampered by anti-CD36 mAb or antibody against the CD36-binding site of TSP-1. The cell aggregation of U937 cells was completely blocked, even in the presence of the 70-kDa fragment, by mAb against leukocyte function associated antigen-1 (LFA-1) or intercellular adhesion molecule-1 (ICAM-1). We therefore propose that TSP-1 may regulate LFA-1/ICAM-1-mediated cell adhesion of monocytes/macrophages by either the inhibitory effect through CD47 or the promoting effect through CD36 depending on which domain/fragment is functional in a given biological setting.  相似文献   

2.
Thrombospondins-1 and -2 (TSP-1, TSP-2) are matricellular glycoproteins with potent antiangiogenic activity. We have previously shown that the antiangiogenic activity of TSP-1 is mediated by the interaction of the type I repeats (TSR) with the receptor CD36, although other domains of TSP-1 have also been implicated. We now show that the antiangiogenic activity of TSP-2, which contains three TSRs but, unlike TSP-1, lacks the capacity to activate TGF-beta, is similarly dependent on CD36. Using the corneal pocket assay we found that TSP-2 did not inhibit bFGF-induced angiogenesis in CD36 null mice. We then demonstrated that (125)[I]-TSP-2 bound to murine macrophages and that binding was diminished by 70% by anti-CD36 antibody or by using cells from CD36 null animals. Solid-phase binding studies revealed that (125)[I]-TSP-2 bound to CD36/glutathione-S-transferase (GST) fusion proteins encoding the region spanning amino acids 93-120, but not amino acids 298-439. This 93-120 amino acid region, previously identified as the TSP-1 binding site, is homologous to domains on other TSP binding proteins, such as LIMP-2 and histidine-rich glycoprotein (HRGP). Finally, we showed with an immunoabsorbent binding assay that TSP-2 bound HRGP with high affinity and that HRGP blocked the antiangiogenic activity of TSP-2, acting like a "decoy" receptor. These data suggest that modulation of the TSR/CD36 system may play an important role in the regulation of the angiogenic "switch," and may provide a target for therapeutic interventions.  相似文献   

3.
CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).  相似文献   

4.
CD38 signaling, either induced by ligation with specific agonistic monoclonal antibody (mAb) or after interaction with CD31, its cognate counter-receptor, is involved in release of IL-1beta, IL-6, and IL-10 cytokines in resting human monocytes. CD38 ligation by the F(ab')(2) IB4 mAb did not induce signals relevant for cytokine secretion and the block of the Fcgamma receptor I (FcgammaRI) by anti-CD64 or FcgammaRII by anti-CD32 mAb did not inhibit CD38-mediated IL-1beta release. Dimerization or multimerization of the CD38 molecule by: (i) cross-linking of the receptor ligated by F(ab')(2) or by (ii) increasing CD38 expression by treating monocytes with IFNgamma were able to restore the truncated CD38-mediated signals involved in cytokine secretion. These data indicate that CD38 receptor-mediated signals operate directly suggesting a Fcgamma receptorial surface molecule independent activation pathway. The key element for the receptor mediated signaling is represented by surface density of CD38 on resting monocytes.  相似文献   

5.
6.
Our previous study has demonstrated the potentiation by uridine triphosphate (UTP) of nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated murine J774 macrophages. In this study, we found that the amount of interleukin-6 (IL-6) release in response to LPS stimulation was greatly enhanced in the presence of UTP. This enhancement exhibited concentration dependence and occurred after 8 h of treatment with LPS. RT-PCR analysis indicated that the steady-state level of IL-6 mRNA induced by LPS was apparently increased upon co-addition of UTP. The potentiation by UTP was inhibited by the treatment with U73122 (a phosphatidylinositol-phospholipase C inhibitor), BAPTA/AM (an intracellular Ca2+ chelator), KN-93 (a selective inhibitor of calmodulin-dependent protein kinase) or PDTC (a nuclear factor B inhibitor). To understand the cross-regulation among NO, PGE2 and IL-6, all of which are dramatically induced after LPS stimulation, the effects of L-NAME (a nitric oxide synthase inhibitor), indomethacin (a cyclooxygenase inhibitor), NS-398 (a cycloxygenase-2 inhibitor) and IL-6 antibody were tested. The results revealed the positive regulation between PGE2 and IL-6 synthesis because NS-398 and indomethacin inhibited LPS plus UTP-induced IL-6 release, and IL-6 antibody attenuated LPS plus UTP-induced PGE2 release. Taken together these results reinforce the role of UTP as a regulatory element in inflamed sites by demonstrating the capacity of this nucleotide to potentiate LPS-induced release of inflammatory mediators.  相似文献   

7.
After activation with IFN-gamma, thioglycollate-elicited murine peritoneal macrophages kill schistosomula of Schistosoma mansoni in vitro by an L-arginine-dependent mechanism which involves the production of reactive nitrogen oxides (NO). In the present study we demonstrate that the regulatory cytokines IL-10, IL-4, and transforming growth factor-beta (TGF-beta) are potent inhibitors of this extracellular killing function of activated macrophages. Each cytokine was found to suppress killing of schistosomula in a dose-dependent fashion. The activity of IL-10 was not permanent, because subsequent treatment with additional IFN-gamma 2 to 6 h later reversed the inhibition of macrophage larval killing. More importantly, the combination of suboptimal levels of any two of these three cytokines was found to give a potent synergistic suppression of schistosomulum killing by IFN-gamma-treated macrophages. Similarly, IL-10, IL-4, or TGF-beta alone blocked the production of NO, and when used in combination these cytokines exhibited an enhanced inhibitory effect on nitrite production. Macrophage-mediated killing of schistosomula through the generation of NO has been shown previously to be a major effector mechanism of schistosome immunity. The results presented here suggest that the suppression of this mechanism by induction of the regulatory cytokines IL-10, IL-4, and TGF-beta, which are known to be produced during schistosome infection, may be an important strategy used by the parasite to evade macrophage-mediated immune destruction.  相似文献   

8.
We examined modulatory effects of lipopolysaccharide (LPS) on IL-6 and IL-12 production by mouse Langerhans cells (LC), spleen-derived CD11c+ dendritic cells (DC), and macrophages (Mphi). Low dose LPS (1 ng/ml) increased IL-6 and IL-12 p40 production by Mphi. LPS slightly augmented IL-6 production but showed no effect on IL-12 p40 production by DC. In contrast, only high dose LPS (1 microg/ml) induced IL-6 but not IL-12 p40 production by LC. CD14 expression was the highest on Mphi and then on DC, but not on LC, which may explain the difference in responsiveness to LPS. We also found that TGF-beta inhibited IL-6 and IL-12 p40 production by LPS-stimulated Mphi. However, TGF-beta did not inhibit IL-6 production and even enhanced IL-12 p40 production by anti-CD40/IFN-gamma-stimulated Mphi. Concerning LC, TGF-beta enhanced IL-6 and IL-12 p40 production when stimulated with anti-CD40/IFN-gamma alone or with anti-CD40/IFN-gamma and LPS. Taken together, these findings indicate diverse effects of LPS and TGF-beta on these antigen presenting cells, which probably represents their differential roles in the innate immunity.  相似文献   

9.
Interleukin (IL)-6 is a proinflammatory cytokine assumed to participate in pancreatic fibrosis by activating pancreatic stellate cells (PSCs). Autocrine TGF-beta1 is to central in PSC functional regulation. In this study, we examined IL-6 secretion from culture-activated rat PSCs and its regulatory mechanism. Activated PSCs express and secrete IL-6. When anti-TGF-beta1 neutralizing antibody was added in the culture medium, IL-6 secretion from activated PSCs was inhibited, whereas exogenous TGF-beta1 added in the culture medium enhanced IL-6 expression and secretion by PSCs in a dose dependent manner. Infection of PSCs with an adenovirus expressing dominant-negative Smad2/3 attenuated basal and TGF-beta1-stimulated IL-6 expression and secretion of PSCs. We also demonstrated the reciprocal effect of PSCs-secreted IL-6 on autocrine TGF-beta1. Anti-IL-6 neutralizing antibody inhibited TGF-beta1 secretion from PSCs. Preincubation of cells with 10 nM PD98059, an extracellular signal-regulated kinase (ERK)-dependent pathway inhibitor, attenuated IL-6-enhanced TGF-beta1 expression and secretion of PSCs. In addition, IL-6 activated ERK in PSCs. These data indicate the existence of autocrine loop between IL-6 and TGF-beta1 through ERK- and Smad2/3-dependent pathways in activated PSCs.  相似文献   

10.
CD86 expression is up-regulated in activated monocytes and macrophages by a mechanism that is not clearly defined. Here, we report that IL-4-dependent CD86 expression requires activation of ERK1/2 and JAK/STAT6 but is negatively regulated by PKCdelta. PMA differentiated U937 monocytic cells when stimulated with IL-4 increased CD11b and CD86 expression by 52- and 98-fold, respectively. PMA+IL-4 treatment also induced a synergistic enhancement of ERK1/2 activation when compared to the effects of PMA and IL-4 alone. Use of the mitogen or extracellular kinase (MEK) inhibitor, PD98059, completely blocked up-regulation of CD11b and CD86 demonstrating the importance of MEK-activated ERK1/2. JAK inhibition with WHI-P154-abrogated IL-4-dependent CD11b and CD86 up-regulation and inhibited STAT6 tyrosine phosphorylation. Importantly, CD11b and CD86 expression were not reliant on IL-4-dependent activation of phosphatidylinositol 3'-kinase (PI 3-kinase). Blockade of PKCdelta activation with rottlerin prevented CD11b expression but lead to a 75- and 213-fold increase in PMA and PMA+IL-4-dependent CD86 expression, respectively. As anticipated, increasing PKCdelta activity with anti-sense reduction of CD45 increased CD11b expression and reduced CD86 expression. Likewise, rottlerin prevented nuclear localization of activated PKCdelta. We conclude from these data that IL-4-dependent CD11b expression relies predominantly on enhanced activation of ERK1/2, while IL-4-dependent CD86 expression utilizes the JAK/STAT6 pathway.  相似文献   

11.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

12.
Regulation of the expression of IL-6 in human monocytes   总被引:15,自引:0,他引:15  
IL-6 is a cellular regulatory molecule with various cell-dependent functions. We have studied the control of IL-6 expression in human monocytes because they play a key role in the production of this molecule. The effects of adherence and different cytokines including CSF-1, IFN-gamma, IL-1 alpha, and granulocyte-macrophage-CSF were tested on IL-6 expression. IL-6 mRNA was usually not detected in the starting population of PBMC. Adherence induced IL-6 gene expression in monocytes in less than 2 h and subsequently IL-6 secretion. Priming of monocytes by adherence was more efficient for IL-6 overinduction by CSF-1. In contrast, high level induction of IL-6 by IFN-gamma in unfractionated PBMC did not require adherence and in situ hybridization revealed that IL-6 mRNA was present in monocytes but not in lymphocytes. A similar phenomenon was observed for IL-1 alpha and granulocyte-macrophage-CSF. Two cell lines, HL-60 and U937, in which monocytic differentiation occurs after induction by PMA, were subsequently investigated. IL-6 was not constitutively detectable in these two cell lines, whereas PMA treatment induced IL-6 expression. This effect was rapid (30 min) and transitory in HL-60, whereas IL-6 mRNA was still detected after 72 h of induction in U937. Addition of human rIL-6 on U937 and HL-60 cells inhibited their proliferation and enhanced expression of HLA class I Ag.  相似文献   

13.
The interactions between monocyte-derived IL-6 and IL-10 in colon cancer are unknown. We continued previous work that showed monocyte/macrophage-derived IL-6 induces IL-6 and MUC1 expression in HT-29 cancer cells, and evaluated if IL-10 present in monocyte/macrophage is involved in this IL-6-mediated effect. We treated HT-29 cells with monocyte/macrophage supernatant following neutralization of monocyte/macrophage-released IL-10. Neutralization markedly enhanced monocyte/macrophage-derived IL-6 effects on HT-29 cells including IL-6 and MUC1 production and cell migration. Double blocking of IL-6 and IL-10 in monocyte/macrophage supernatants abolished this enhancement. Western blot analysis of STAT3 phosphorylation showed that this augmented response in HT-29 cells following IL-10 neutralization is probably mediated through enhanced IL-6-induced phosphorylation (Tyr705) of STAT3 proteins. Therefore, monocytes/macrophages have the capacity to release the functionally associated cytokines IL-6 and IL-10 whose interactions can account for the pathogenesis and progression of colon cancer.  相似文献   

14.
Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that is able to make normal endothelial cells unresponsive to a wide variety of inducers. Here we use both native TSP-1 and small antiangiogenic peptides derived from it to show that this inhibition is mediated by CD36, a transmembrane glycoprotein found on microvascular endothelial cells. Both IgG antibodies against CD36 and glutathione-S-transferase–CD36 fusion proteins that contain the TSP-1 binding site blocked the ability of intact TSP-1 and its active peptides to inhibit the migration of cultured microvascular endothelial cells. In addition, antiangiogenic TSP-1 peptides inhibited the binding of native TSP-1 to solid phase CD36 and its fusion proteins, as well as to CD36-expressing cells. Additional molecules known to bind CD36, including the IgM anti-CD36 antibody SM, oxidized (but not unoxidized) low density lipoprotein, and human collagen 1, mimicked TSP-1 by inhibiting the migration of human microvascular endothelial cells. Transfection of CD36-deficient human umbilical vein endothelial cells with a CD36 expression plasmid caused them to become sensitive to TSP-1 inhibition of their migration and tube formation. This work demonstrates that endothelial CD36, previously thought to be involved only in adhesion and scavenging activities, may be essential for the inhibition of angiogenesis by thrombospondin-1.  相似文献   

15.
IL-1beta has been shown to play a pivotal role in the development of inflammatory disorders. We recently found that a natural triterpene, ursolic acid (UA), enhanced MIF release from nonstimulated macrophages. In this study, we examined the effects of UA on the production of several cytokines in resident murine peritoneal macrophages (pMphi). UA increased the protein release of IL-1beta, IL-6, and MIF, but not of TNF-alpha, in dose- and time-dependent manners. This triterpene also strikingly induced the activation of p38 MAPK and ERK1/2 together with that of upstream kinases. The release of UA-induced IL-1beta was significantly inhibited by the inhibitors of p38 MAPK, MEK1/2, ATP-binding cassette transporter, and caspase-1. Furthermore, UA induced intracellular ROS generation for IL-1beta production, which was suppressed by an antioxidant. Pretreatment with an anti-CD36 Ab significantly suppressed IL-1beta release, and surface plasmon resonance assay results showed that UA bound to CD36 on macrophages. In addition, the amount of IL-1beta released from UA-treated pMphi of CD36-deficient mice was markedly lower than that from those of wild-type mice. Interestingly, UA was found to aggregate in culture medium, and the aggregates were suggested to be responsible for IL-1beta production. In addition, i.p. administration of UA increased the levels of IL-1beta secretion and MPO activity in colonic mucosa of ICR mice. Taken together, our results indicate that aggregated UA is recognized, in part, by CD36 on macrophages for generating ROS, thereby activating p38 MAPK, ERK1/2, and caspase-1, as well as releasing IL-1beta protein via the ATP-binding cassette transporter.  相似文献   

16.
IL-18 is a pleiotropic cytokine that is produced by many cancer cells. A recent report suggested that IL-18 plays a key role in regulating the immune escape of melanoma and gastric cancer cells. Thrombospondin (TSP-1) is known to inhibit angiogenesis in several cancers but some studies have reported that it stimulates angiogenesis in some cancers such as gastric cancer. IL-18 and TSP-1 are related to tumor proliferation and metastasis. This study investigated the relationship between IL-18 and TSP-1 in gastric cancer. RT-PCR and ELISA showed that after the cells had been treated with IL-18, the level of TSP-1 mRNA expression and TSP-1 protein production by IL-18 increased in both a dose- and time-dependent manner. The cells were next treated with specific inhibitors in order to determine the signal pathway involved in IL-18-enhanced TSP-1 production. IL-18-enhanced TSP-1 expression was blocked by SP600125, a c-Jun N-terminal kinase (JNK) specific inhibitor. In addition, Western blot showed that IL-18 enhanced the expression of phosphorylated JNK. Overall, these results suggest that IL-18 plays a key role in TSP-1 expression involving JNK.  相似文献   

17.
Agents that increase intracellular cAMP have been shown to reduce joint inflammation in experimental arthritis, presumably by lowering the release of proinflammatory cytokines, such as TNF-alpha. Recent studies suggest that, in joints of patients with rheumatoid arthritis, TNF-alpha release from macrophages is triggered by their interaction with IL-15-stimulated T lymphocytes. In this report, we analyze the effect of rolipram, a cAMP-specific phosphodiesterase inhibitor, on TNF-alpha production in this experimental system. Cocultures of U937 cells with IL-15-stimulated T cells, but not control T cells, resulted in increased release of TNF-alpha. Pretreatment of T cells with rolipram or cAMP analogues inhibited the IL-15-stimulated increases in proliferation, expression of cell surface molecules CD69, ICAM-1, and LFA-1, and release of TNF-alpha from macrophages. Addition of PMA to T cells dramatically increased the expression of cell surface molecules, but had little or no effect on TNF-alpha release from either T cells or from cocultures, suggesting that other surface molecules must also be involved in T cell/macrophage contact-mediated production of TNF-alpha. Addition of PMA synergistically increased the proliferation of IL-15-stimulated T cells and the secretion of TNF-alpha from IL-15-stimulated T cell/macrophage cocultures. Rolipram and 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) blocked these increases. Measurement of protein kinase A (PKA) activity and the use of inhibitory cAMP analogues (RpCPT-cAMP) confirmed that rolipram worked by stimulating PKA. These data suggest that PKA-activating agents, such as rolipram, can block secretion of TNF-alpha from macrophages by inhibiting T cell activation and expression of surface molecules.  相似文献   

18.
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN; CD209) is a human pathogen-attachment C-type lectin with no obvious murine ortholog and for which ligation leads to enhanced anti-inflammatory cytokine release and altered proinflammatory cytokine production. Although induced by IL-4 in monocytes and considered as a DC marker, DC-SIGN expression on human APCs under homeostatic conditions is so far unexplained. We report in this study that M-CSF enhances DC-SIGN expression on in vitro derived anti-inflammatory macrophages and that M-CSF mediates the induction of DC-SIGN by fibroblast- and tumor cell-conditioned media. The M-CSF-inducible DC-SIGN expression along monocyte-to-macrophage differentiation is dependent on JNK and STAT3 activation, potentiated by STAT3-activating cytokines (IL-6, IL-10), and abrogated by the M1-polarizing cytokine GM-CSF. In pathological settings, DC-SIGN expression is detected in tumor tissues and on ex vivo-isolated CD14(+) CD163(+) IL-10-producing tumor-associated macrophages. Importantly, DC-SIGN Abs reduced the release of IL-10 from macrophages exposed to Lewis(x)-expressing SKBR3 tumor cells. These results indicate that DC-SIGN is expressed on both wound-healing (IL-4-dependent) and regulatory (M-CSF-dependent) alternative (M2) macrophages and that DC-SIGN expression on tumor-associated macrophages might help tumor progression by contributing to the maintenance of an immunosuppressive environment.  相似文献   

19.
The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.  相似文献   

20.
We investigated potential mechanisms by which lymphocytes infiltrating rheumatoid synovium become immunosuppressed. In 20 of 22 synovial fluids and 12 of 13 synovial tissue culture supernatants, no IL-1 bioactivity could be detected in the thymocyte proliferation assay. These same preparations could, however, support proliferation of fibroblast monolayers, consistent with the presence of IL-1 and/or other fibroblast growth factors. Addition of either rheumatoid synovial fluids or synovial culture supernatants to exogenous IL-1 in the IL-1 bioassay caused marked inhibition of the assay indicative of an IL-1 inhibitor. This inhibition of IL-1 could be reversed by treating the effusions or supernatants with a neutralizing antibody to transforming growth factor-beta (TGF-beta). Furthermore, monocyte-macrophages isolated from rheumatoid synovial fluid constitutively released both latent and active TGF-beta in culture at levels sufficient to completely block the biologic activity of 100 U/ml IL-1. The production of substantial levels of TGF-beta by synovial macrophages, as well as the apparent ability of these inflammatory macrophages to activate latent TGF-beta, implicates TGF-beta not only as an important inhibitor of IL-1-induced lymphocyte proliferation, but also as a key cytokine in promoting synovial fibroblast hyperplasia and pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号