首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat lung microsomal cytochrome P-450 (P-450) enzymes have been characterized with regard to their catalytic specificities towards activation of several procarcinogens to genotoxic metabolites in Salmonella typhimurium TA1535/pSK1002. We first examined the roles of rat liver microsomal P-450 enzymes in the activation of benzo[a]pyrene and its 7,8-diol enantiomers to genotoxic products, and found that P-450 1A1 is a major catalyst for the activation of these potential procarcinogens in rat livers. Using lung microsomes isolated from rats treated with various P-450 inducers we obtained evidence that at least three P-450 enzymes are involved in the activation of several procarcinogens. Immunoinhibition studies support the view that benzo[a]pyrene and its 7,8-diol derivatives, other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, and 3-amino-1-methyl-5H-pyrido[4,3-b]indole are activated to genotoxins mainly by rat P-450 1A1, which is inducible in rat lungs by 5,6-benzoflavone and the polychlorinated biphenyl mixture Aroclor 1254. Activation of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline and 2-amino-3-methylimidazo[4,5-f]quinoline may be catalyzed by another P-450 enzyme because the activities were not induced by treatment with 5,6-benzoflavone or Aroclor 1254. The observation that both activities were inhibited by antibodies raised against P-450 1A2 and by 7,8-benzoflavone suggests a role for an enzyme of P-450 1A family, probably P-450 1A2, in rat lung microsomes. The activation of aflatoxin B1 and sterigmatocystin appears to be catalyzed by other P-450 enzyme(s) rather than the P-450 1A family as judged by the different responses of activities to the P-450 inducers and the specific antibodies in rat lung microsomes. Interestingly, lung microsomal activation of several procarcinogens was found to be suppressed in rats treated with isosafrole and pregnenolone 16 alpha-carbonitrile. Thus, the results support the roles of different P-450 enzymes in the activation of procarcinogens in rat lung microsomes.  相似文献   

2.
Acetylglyceryl ether phosphorylcholine (AGEPC), or 1-O-Alkyl-2-acetyl-sn-glyceryl 3-phosphorylcholine, has been shown to have a dramatic influence on phosphoinositide metabolism in isolated rat hepatocytes and upon glycogenolysis in the intact perfused rat liver. Addition of 5 X 10(-10) M AGEPC to 32Pi-labeled rat hepatocytes resulted in up to a 30 to 40% decrease in the [32Pi]phosphatidylinositol 4,5-bisphosphate within 10 s. The 32P content of phosphatidylinositol 4-phosphate decreased approximately 25% within 60 s, while a 5 to 8% decrease in [32P]phosphatidylinositol was observed only after 2 to 5 min of incubation of hepatocytes with AGEPC. Infusion of AGEPC (2 X 10(-10) M) into perfused livers resulted in a 3-fold increase in the glucose output in the effluent perfusate within 2 min. Interestingly, when a 500-fold higher concentration, i.e. 1 X 10(-7) M, of 1-O-alkyl-sn-glyceryl 3-phosphorylcholine or the stereoisomer 3-O-alkyl-2-acetyl-sn-glyceryl 1-phosphorylcholine was infused, no increase in the hepatic glucose output was seen. These observations lead to the conclusion that AGEPC exerts a potent influence on the polyphosphoinositide metabolism and glycogenolysis in rat liver and establishes the liver as an ideal system in which to conduct a detailed inquiry into the biochemical mechanism(s) responsible for the biological action of this unusual phospholipid.  相似文献   

3.
The bipotent liver progenitor cells, so called oval cells, may participate at the early stages of hepatocarcinogenesis induced by chemical carcinogens. Unlike in mature parenchymal cells, little is known about formation of DNA adducts and other genotoxic events in oval cells. In the present study, we employed spontaneously immortalized rat liver WB-F344 cell line, which is an established in vitro model of oval cells, in order to study genotoxic effects of selected carcinogenic polycyclic aromatic hydrocarbons (PAHs). With exception of dibenzo[a,l]pyrene, and partly also benzo[g]chrysene and benz[a]anthracene, all other PAHs under the study induced high levels of CYP1A1 and CYP1B1 mRNA. In contrast, we observed distinct genotoxic and cytotoxic potencies of PAHs. Dibenzo[a,l]pyrene, and to a lesser extent also benzo[a]pyrene, benzo[g]chrysene and dibenzo[a,e]pyrene, formed high levels of DNA adducts. This was accompanied with accumulation of Ser-15 phosphorylated form of p53 protein and induction of apoptosis. Contrary to that, benz[a]anthracene, chrysene, benzo[b]fluoranthene and dibenzo[a,h]anthracene induced only low amounts of DNA adducts formation and minimal apoptosis, without exerting significant effects on p53 phosphorylation. Finally, we studied effects of 2,4,3',5'-tetramethoxystilbene and fluoranthene, inhibitors of CYP1B1 activity, which plays a central role in metabolic activation of dibenzo[a,l]pyrene. In a dose-dependent manner, both compounds inhibited apoptosis induced by dibenzo[a,l]pyrene, suggesting that it interferes with the metabolic activation of the latter one. The present data show that in model cell line sharing phenotypic properties with oval cells, PAHs can be efficiently metabolized to form ultimate genotoxic metabolites. Liver progenitor cells could be thus susceptible to this type of genotoxic insult, which makes WB-F344 cell line a useful tool for studies of genotoxic effects of organic contaminants in liver cells. Our results also suggest that, unlike in mature hepatocytes, CYP1B1 might be a primary enzyme responsible for formation of DNA adducts in liver progenitor cells.  相似文献   

4.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

5.
G J Lauquin  P V Vignais 《Biochemistry》1976,15(11):2316-2322
Chemical labeling by 3H and biosynthetic labeling by 14C of bongkrekic acid (BA) are described. In the rat liver cell, mitochondria are the only subcellular particles to bind [3H]BA with high affinity. The high affinity sites for BA in mitochondria are located in the inner membrane. High affinity binding sites for BA are only displayed at pH below 7; they amount to 0.15-0.20 nmol/mg of protein in rat liver mitochondria and to 1.1-1.3 nmol/mg of protein in rat heart mitochondria. These values are similar to those found for the high affinity atractyloside binding sites and for the carboxyatractyloside binding sites. The kinetic parameters for BA binding to rat heart mitochondria at 20 degrees C are Kd = 10-40 X 10(-9) M, k+1 = 0.7 X 10(5) M-1 s-1, k-1 = 1.4 X 10(-3) M s-1. Binding assays carried out with rat heart mitochondria, under equilibrium conditions, showed that the amount of BA bound to high affinity sites increases with temperature and reaches the maximum value of 1.1-1.3 nmol/mg of protein at 32-35 degrees C. At lower temperatures, and under equilibrium conditions, a significant fraction of high affinity sites remains masked and is not titrated by BA; these masked BA sites are revealed by addition of micromolar concentrations of ADP or by energization of the mitochondria. Carboxyatractyloside added to rat heart mitochondria preloaded with [3H]BA is able to displace part of the bound [3H]BA. Displacement of the bound BA is enhanced by simultaneous additions of carboxyatractyloside plus ADP, or by energization of the mitochondria. The synergistic effect of carboxyatractyloside and ADP on displacement of bound [3H]BA is also observed in isolated inner membrane vesicles from rat liver mitochondria. When BA is preincubated with rat heart mitochondria before addition of [14C]ADP for assay of ADP transport, the inhibition of ADP transport is a mixed-type inhibition. When BA is preincubated with the mitochondria together with a very small concentration of ADP (less than 0.5 muM), the inhibition of [14C]ADP transport is markedly increased (up to ten times) and it becomes typically uncompetitive, which suggests the formation of a ternary complex, carrier-ADP-BA. The transition from a mixed-type inhibition, with high Ki value, to an uncompetitive type of inhibition, with low Ki value, upon addition of ADP, is explained by an ADP-induced conformational change of the ADP translocator.  相似文献   

6.
The analbuminemic rat strain established by Nagase et al. (Nagase, S., Shimamune, K., and Shumiya, S. (1979) Science 205, 590-591) exhibits hereditary deficiency in albumin biosynthesis. Serum bilirubin concentration is rather lower in homozygous (aa) rats (0.009 +/- 0.002 mg/dl) as compared with heterozygous (Aa) rats (0.047 +/- 0.009 mg/dl) or wild-type Sprague-Dawley (AA) rats (0.034 +/- 0.006 mg/dl) as evidenced by high pressure liquid chromatography analysis of bilirubin. After intravenous administration of various amounts of [heme-3H]hemoglobin in rats, [3H]bilirubin derived from [3H]heme of hemoglobin in vivo is more efficiently excreted into bile in aa rats than in Aa or AA rats. [3H]Bilirubin is exclusively bound with high-density lipoprotein (HDL) in aa rats, and a significant amount of [3H]bilirubin is shown to bind with HDL in Aa or AA rats in vivo. Scatchard plots revealed that [3H]bilirubin is bound with HDL in three binding modes depending on the molar ratio of [3H]bilirubin to HDL: Kd = 0.8 X 10(-7) M (molar ratio, 0.02-0.06), Kd = 1.6 X 10(-6) M (molar ratio, 0.06-0.41), and Kd = 1.2 X 10(-4) M (molar ratio, 0.79-9.02). Even under extreme conditions of excess hemoglobin administration, the molar ratio remains under 0.041; and thus, expected the Kd value would remain around 0.8 X 10(-7) M. Binding of [3H]bilirubin to rat serum albumin revealed two distinct binding modes depending on the molar ratio of [3H]bilirubin to rat serum albumin: Kd = 3.6 X 10(-7) M (molar ratio, 0.03-0.21), and Kd = 5.0 X 10(-6) M (molar ratio, 0.21-2.46). Under physiological conditions in Aa or AA rats, the former mode would be more reliable than the latter. Thus, HDL could bind with approximately 4.5 times higher affinity than rat serum albumin in Aa or AA rats under physiological conditions in vivo.  相似文献   

7.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

8.
The beta-adrenergic receptor was characterized on BCG-activated rat peritoneal macrophage membranes by radio-ligand binding studies. Saturable binding with [125I]iodocyanopindolol (125I-ICYP) was demonstrated. With Scatchard analysis, rat macrophages demonstrate approximately 1000 receptors per cell with a Kd of 5 X 10(-11) M for 125I-ICYP. Competition curves with (-) and (+) propranolol at concentrations below 10(-6) M confirmed stereospecificity. The potency of various ligands to compete for 125I-ICYP binding sites followed the order: propranolol greater than isoproterenol greater than epinephrine greater than norepinephrine with apparent Kd of 2.0 X 10(-9), 3.9 X 10(-7), 1.0 X 10(-5), and 2.5 X 10(-5) M, respectively. Isoproterenol-stimulated adenylate cyclase activity was two-fold above basal activity. The potential physiologic significance of a beta-adrenergic receptor on rat peritoneal macrophages was suggested by a dose-dependent decrease in phagocytosis of soluble, model immune complexes (aggregated gamma-globulin) by macrophages incubated with metaproterenol. We conclude that the rat macrophage has a beta-adrenergic receptor and that catecholamines may thereby modulate macrophage function.  相似文献   

9.
Kinetic analysis permitted to determine two sites of hydroxythiamine diphosphate binding in apotransketolase. The Ki values for these sites differed significantly: (7-22) X 10(-9) M and (13.0-19.7) X 10(-8) M. The rate of thiamine diphosphate turnover within holotransketolase in rat liver tissue was studied by the radioisotope method, using [14C]thiamine as a labeled precursor. The absolute values of half-substitution time and the rate constant of coenzyme degradation in the transketolase molecule are close to those for the protein moiety of the enzyme and are 153 hours and 0.108 days-1, respectively. In vivo rat liver transketolase exists in a substituted alpha-carbanion form. Within the holoenzyme molecule substitution of thiamine diphosphate for hydroxythiamine diphosphate does not influence the formation of an intermediate alpha-carbanion form of the enzyme.  相似文献   

10.
N Tran-Quang  N Bernard  Y Higa  R Engler 《FEBS letters》1983,159(1-2):161-166
The binding of [125I]Hpx--heme with the rat hepatic plasma membrane receptor was studied at 37 degrees C as well as different parameters such as plasma membrane concentration, calcium dependence, optimal pH and specific binding. A Scatchard plot revealed the existence of one binding for [125I]Hpx--heme on the isolated liver plasma membrane with a Kd = 3.2 X 10(-8) M.  相似文献   

11.
The effect of CGRP on [14C]-aminopyrine accumulation in isolated parietal cell preparations from guinea-pig fundic mucosa was studied. Parietal cells consisted of 60% of the preparations. [14C]-Aminopyrine accumulation was used as an index of physiological response of parietal cells to secretagogues. CGRP dose-dependently (10(-12)-10(-9) M) inhibited parietal cell aminopyrine accumulation stimulated by histamine (10(-4) M), carbachol (10(-4) M), and pentagastrin (5 X 10(-6) M). The concentration of CGRP exerting half-maximal inhibition of [14C]-aminopyrine accumulation was 8.7 X 10(-11) M for histamine, 9.1 X 10(-11) M for carbachol, and 4.7 X 10(-11) M for pentagastrin. The inhibitory effect was much more potent than cimetidine, pirenzepine or benzotript. CGRP but not cimetidine inhibited DBcAMP stimulated aminopyrine accumulation (IC50 = 7.5 X 10(-11) M). These results suggest that CGRP may exert its inhibitory action on gastric acid secretion by a direct action on the parietal cell or the somatostatin-producing D cell.  相似文献   

12.
13.
Chromium ions (Cr3+)evoked a biphasic curve of changes of rat liver microsomal cholesterol biosynthesis using [14C]acetate and/or [14C]mevalonate as precursors. While for the lower range of Cr3+ concentrations the rate of cholesterol biosynthesis rises, at concentrations above 8 X 10(-6) M they evoke a decrease in the cholesterol biosynthesis, up to 50% down on its control value at a concentration of 8 X 10(-4) M. Differences were more pronounced when using [14C]mevalonate instead of [14C]acetate as precursor. The activity of the microsomal enzyme biphenyl-4-hydroxylase showed an equally intense rise to that of cholesterol biosynthesis up to a 8 X 10(-6) M Cr3+ concentration. Above this concentration, however, the activity of the enzyme starts to drop. NADPH-cytochrome c reductase and NADPH-oxidase were decreased at all Cr3+ concentrations used, which cover a 100-fold range. Lineweaver-Burk plots of the cytoplasmic glucose-6-phosphate dehydrogenase demonstrated an uncompetitive mechanism of inhibition by Cr3+ ions. The results are discussed in terms of the possible significance of the Cr3+ concentration-dependent effects on cholesterol biosynthesis, with the observed atherosclerosis in Cr-deficient humans.  相似文献   

14.
The human breast cancer cell line (T47D) has specific, high affinity calcitonin receptors and calcitonin-responsive adenylate cyclase. Human, salmon and [Asu1,7]eel calcitonin inhibited cell growth in a dose-related manner with almost equipotency. Analogues of human calcitonin demonstrated slight cell growth inhibition. We found extreme growth inhibition with daily treatment with dibutyryl cyclic AMP (10(-4) M). In contrast to calcitonin 1,25-(OH)2D3 had a biphasic effect on cell growth. Physiological doses (5 X 10(-10) M) of 1,25-(OH)2D3 stimulated growth of T47D, whereas treatment by supraphysiological amounts (2.5 X 10(-7) M) caused significant inhibition of growth. Calcitonin and 1,25-(OH)2D3 appeared to have additive effects.  相似文献   

15.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

16.
Thyroid hormone. Aldosterone antagonism in cultured epithelial cells   总被引:1,自引:0,他引:1  
Thyroid hormone (T3) has been demonstrated to inhibit the action of aldosterone on sodium transport in toad urinary bladder and rat kidney. We have examined the effect of T3 on aldosterone action and specific nuclear binding in cultured epithelial cells derived from toad urinary bladder. In cell line TB6-C, addition of 5 X 10(-8) M T3 to culture media for up to 3 days results in no change in short-circuit current or transepithelial resistance. This concentration of T3 completely inhibits the maximal increase in short-circuit current in response to 1 X 10(-7) M aldosterone. The inhibition can be demonstrated with 18 h preincubation or with simultaneous addition of T3 and aldosterone. The half-maximal concentration for the inhibition of the aldosterone effect is approx. 5 X 10(-9) M T3. T3 has no effect on cyclic AMP-stimulated short-circuit current in these cells. The effect of T3 on nuclear binding of [3H]aldosterone was examined using a filtration assay with data analysis by at least-squares curve-fitting program. Best fit was obtained with a model for two binding sites. The dissociation constants for the binding were K'd1 = (0.82 +/- 0.36) X 10(-10) M and K'd2 = (3.2 +/- 0.60) X 10(-8) M. The half-maximal concentration for aldosterone-stimulated sodium transport in these cells is approx. 1 X 10(-8) M. Analysis of nuclear aldosterone binding in cells preincubated for 18 h with 5 X 10(-8) M T3 showed a K'd1 = (0.15 +/- 0.10) X 10(-10) M and K'd2 = (3.5 +/- 0.10) X 10(-8) M. We conclude that T3 inhibits the action of aldosterone on sodium transport at a site after receptor binding in the nucleus.  相似文献   

17.
Deuterium NMR spectra for a series of selectively deuterated substrates and inhibitors in the presence of lipoxygenase-1 (EC 1.13.11.12) are presented. Extrapolation of the 2H NMR line widths yielded transverse relaxation rates for the bound inhibitors [2H21]dodecanoic acid (protonated at the 2,2-position), [2,2-2H]dodecanoic acid, and [12,12,12-2H]dodecanoic acid which are 1/T2,bd = 5.0 X 10(3), 1.12 X 10(4), and 1.16 X 10(3) s-1, respectively. The substrates [9,10,12,13-2H]linoleic acid and [11,11-2H]linoleic acid had 1/T2,bd = 8.2 X 10(3) and 7.95 X 10(3) s-1, respectively. Kinetic measurements established Ki = 1.5 X 10(-3) M for dodecanoic acid (lauric acid) inhibition of lipoxygenase when the substrate is linoleic acid (Km = 2.6 X 10(-5) M). Lipoxygenase, with Mr 102,000, is predicted to have a rotational correlation time tau c - 1.2 X 10(-7) s, yielding a 1/T2,bd = 1.56 X 10(4) s-1 for tightly bound ligand. Hence, the correlation times of the selectively deuterated inhibitors indicate internal motions are present in the bound species.  相似文献   

18.
Isolated, intact rat liver nuclei have high-affinity (Kd = 10(-9) M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4 degrees C and rapidly lost at 37 degrees C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25 degrees C and 37 degrees C than at 4 degrees C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogeneous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd = 10(-9) M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78 +/- 0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000 X g, 30 min) contains high-capacity (955 +/- 405 (S.D.) fmol/mg protein), low-affinity (Kd = 10.9 +/- 4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000 X g, 60 min) contains low-capacity (46 +/- 15 (S.D.) fmol/mg protein), high-affinity (Kd = 0.61 +/- 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%-3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

19.
The catabolism of glycine in the isolated perfused rat liver was investigated by measuring the production of 14CO2 from [1-14C]- and [2-14C]glycine. Production of 14CO2 from [1-14C]glycine was maximal as the perfusate glycine concentration approached 10 mM and exhibited a maximal activity of 125 nmol of 14CO2 X g-1 X min-1 and an apparent Km of approximately 2 mM. Production of 14CO2 from [2-14C]glycine was much lower, approaching a maximal activity of approximately 40 nmol of 14CO2 X g-1 X min-1 at a perfusate glycine concentration of 10 mM, with an apparent Km of approximately 2.5 mM. Washout kinetic experiments with [1-14C]glycine exhibited a single half-time of 14CO2 disappearance, indicating one metabolic pool from which the observed 14CO2 production is derived. These results indicate that the glycine cleavage system is the predominant catabolic fate of glycine in the perfused rat liver and that production of 14CO2 from [1-14C]glycine is an effective monitor of metabolic flux through this system. Metabolic flux through the glycine cleavage system in the perfused rat liver was inhibited by processes which lead to reduction of the mitochondrial NAD(H) redox couple. Infusion of beta-hydroxybutyrate or octanoate inhibited 14CO2 production from [1-14C]glycine by 33 and 50%, respectively. Alternatively, infusion of acetoacetate stimulated glycine decarboxylation slightly and completely reversed the inhibition of 14CO2 production by octanoate. Metabolic conditions which are known to cause a large consumption of mitochondrial NADPH (e.g. ureogenesis from ammonia) stimulated glycine decarboxylation by the perfused rat liver. Infusion of pyruvate and ammonium chloride stimulated production of 14CO2 from [1-14C]glycine more than 2-fold. Lactate plus ammonium chloride was equally as effective in stimulating glycine decarboxylation by the perfused rat liver, while alanine plus ammonium chloride was ineffective in stimulating 14CO2 production.  相似文献   

20.
Characteristics of specific receptors for epidermal growth factor (EGF) and its effect on cellular proliferation and synthesis of DNA and protein were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Binding studies using 125I-EGF revealed the presence of high affinity binding sites for EGF on VSMC in culture: the apparent dissociation constant was approximately 2.5 X 10(-10)M and the maximal binding capacity was approximately 67,000 sites/cell. EGF stimulated cellular proliferation and incorporation of [3H]thymidine and [3H]leucine into the cells in a dose-dependent fashion; the approximate half-maximal stimulation was induced with 1.5 X 10(-10)M. Platelet-derived growth factor (PDGF) had an additive effect with EGF on DNA synthesis by VSMC. Preincubation of VSMC with unlabeled EGF resulted in a substantial reduction in the number of receptors without changing the affinity, suggesting receptor "down-regulation" mechanism. These data indicate that rat aortic VSMCs have specific receptors for EGF, and suggest that EGF, in addition to PDGF, is also involved in the cell growth of VSMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号