首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion fluxes across the plasma membrane activated by 1 mM Ce4+, cell apoptosis and taxol biosynthesis in suspension cultures ofTaxus cuspidata were studied. The extracellular pH sharply decreased upon the addition of 1 mM Ce4+, then increased gradually and exceeded the initial pH value over a time period of 12 h. The extracellular Ca2+ concentration decreased within the first 3 h after the addition of Ce4+, then gradually decreased to one third of initial value in control at about 72 h and remained unchanged afterwards. Experiments with an ion channel blocker and a Ca2+-channel blocker indicated that the dynamic changes in extracellular pH and the Ca2+ concentration resulted from the Ce4+-induced activation of H+ uptake and Ca2+ influx across the plasma membranevia ion channels. A pretreatment of the ion channel blocker initiated Ce4+-treated cells to undergo necrosis, and the prior addition of the Ca2+-channel blocker inhibited Ce4+-induced taxol biosynthesis and apoptosis. It is thus inferred that H+ uptake is necessary for cells to survive a Ce4+-caused acidic environment and is one of the mechanisms of Ce4-induced apoptosis. Furthermore, the Ca2+ influx across the plasma membrane mediated both the Ce4+-induced apoptosis and taxol biosynthesis.  相似文献   

2.
The interactions between Hg2+, Ce3+, and the mixuure of Ce3+ and Hg2+, and DNA from fish intestine in vitro were investigated by using absorption spectrum and fluorescence emission spectrum. The ultraviolet absorption spectra indicated that the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ to DNA generated an obviously hypochromic effect. Meanwhile, the peak of DNA at 205.2 nm blue-shifted and at 258.2 nm red-shifted. The size of the hypochromic effect and the peak shift of DNA by metal ion treatments was Hg2+>Hg2++Ce3+>Ce3+. The fluorescence emission spectra showed that with the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ the emission peak at about 416.2 nm of DNA did not obviously change, but the intensity reduced gradually and the sequence was Hg2+>Hg2++Ce2+>Ce3+. Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ had 1.12, 0.19, and 0.41 binding sites to DNA, respectively; the fluorescence quenching of DNA caused by the metal ions all attributed to static quenching. The binding constants (K A ) of binding siees were 8.98×104 L/mol and 1.02×104 L/mol, 5.12×104 L/mol and 1.10×103 L/mol, 6.66×104 L/mol and 2.36×103 L/mol, respectively. The results showed that Ce3+ could relieve the destruction of Hg2+ on the DNA structure.  相似文献   

3.
The signal events of 1 mM Ce4+ (Ce(NH4)2(NO3)6)-induced apoptosis of cultured Taxus cuspidata cells were investigated. The percentage of apoptotic cells increased from 0.82% to 51.32% within 6 days. Caspase-3-like protease activity became notable during the second day of Ce4+-treatment, and the maximum activity was 5-fold higher than that of control cells at the fourth day. When the experiment system was pretreated with acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) at 100 M, caspase-3-like activity resulted in distinct inhibition by 70% and 77.3% after 3 and 4 days of induction. Furthermore, 100 M Ac-DEVD-CHO partially reduced the apoptotic cells by 58.6% and 60.8% at day 4 and 5 respectively. Ce4+ induced superoxide anions (O2·–) transient burst, and the first peak appeared at around 3.7–4 h, the second appeared at about 7 h. Both O2·– burst and cell apoptosis were effectively suppressed by application of diphenyl iodonium (NADPH oxidase inhibitor). Inhibition of O2·– production attenuated caspase-3-like activation by 49% and 53.6% during day 3 and 4 respectively. In addition, a total of 15 protein spots changed in response to caspase-3-like protease activation were identified by two-dimensional gel electrophoresis. These results suggest that Ce4+ of 1 mM induces apoptosis in suspension cultures of T. cuspidata through O2·– burst as well as caspase-3-like protease activation. The burst of O2·– exerts its activity as an upstream of caspase-3-like activation. Our results also implicate that other signal pathways independent of an O2·– burst possibly participate in mediating caspase-3-like protease activation.  相似文献   

4.
以未老化和人工老化后的沙葱(Allium mongolicum Regel.)种子为材料,采用氯化铈(Ce3+)和氯化镧(La3+)浸种,测定种子萌发和生理指标,探讨Ce3+和La3+浸种对种子萌发、老化种子活力和生理特性的影响。结果显示:(1)在老化0~5 h时,Ce3+和La3+处理可显著促进沙葱种子萌发,提高种子活力;在老化5 h后,Ce3+和La3+处理对种子萌发无明显促进作用。(2)在老化0~15 h时,Ce3+和La3+处理的沙葱种子中抗氧化酶活性和抗坏血酸(AsA)含量提高,其超氧阴离子自由基(O2-·)产生速率、过氧化氢(H2O2)含量和丙二醛(MDA)含量显著降低;在老化15 h后,Ce3+和La3+处理的种子抗氧化酶活性提高、AsA含量降低,O2-·产生速率和MDA含量提高。(3)在老化5 h时,沙葱种子呼吸速率发生跃变达到最大,Ce3+和La3+处理显著降低了种子呼吸速率。(4)Ce3+和La3+处理在老化0~5 h时提高了沙葱种子超弱发光(UWL)强度,但在老化5 h后沙葱种子的UWL强度降低。研究认为,在沙葱种子人工老化初期,Ce3+和La3+浸种处理可以诱导增强种子抗氧化酶活性和提高AsA含量,有效清除因老化产生积累的过量活性氧(ROS),减轻过氧化伤害,提高种子活力;种子老化中后期,其内部ROS产生与清除系统发生紊乱,加剧了ROS对种子结构的损伤,Ce3+和La3+浸种处理的缓解效应丧失。  相似文献   

5.
Bing Zhu  Deping Xue  Kui Wang 《Biometals》2004,17(4):423-433
The 31P NMR studies showed that lanthanide ions promote the site-specific hydrolysis of 2,3-Bisphosphoglycerate (BPG) at pH 7.4 by cleaving the 2 phosphomonoester bond. The effect of fourteen trivalent lanthanide ions and Sc3+, and Y3+ were compared by the percentage of hydrolysis obtained by determining the inorganic phosphate produced. All the trivalent lanthanide ions promote the hydrolysis, but Sc3+ not. Among them, Ce3+ affects the reaction mostly. This was mainly attributed to the autooxidation of Ce3+ to Ce4+, since the promoting effect of Ce3+ is related to the increasing Ce4+ amount in the solution and depressed by adding sulphite. Ce4+ promotes the hydrolysis more efficiently than Ce3+ do. The pseudo first-order rate constant for the hydrolysis of BPG by Ce(SO4)2 (18.7 mM) at pH 1 and pH 2, 37 °C is 3.1 h–1 and 0.65 h–1 respectively. A mechanism with a hydroxo species as reactive intermediate was proposed for the trivalent lanthanide ions. The site-specificity was explainable by this mechanism.  相似文献   

6.
Callus cultures of Saussurea medusa were cultivated on solid culture medium supplemented with either Ce3+, La3+, Nd3+ or a mixture of rare earth elements. Ce3+, 0.05 mM, gave the highest biomass (0.53 g dry wt per flask) and total flavonoids (27.5 mg per flask), which were, 70% and 100% higher than those without Ce3+ addition, respectively. Ce3+, 0.01–0.1 mM, or La3+, 0.05 mM, or the mixture of rare earth elements, 0.025–0.1 mM, can substitute for 6-benzyladenine, and 0.025 mM Ce3+ can partly substitute for naphthaleneacetic acid in promoting cell growth and biosynthesis of total flavonoids in S. medusa.  相似文献   

7.
LaBSiO5 phosphors doped with Ce3+ and Tb3+ were synthesized using the conventional solid‐state method at 1100 °C. The phase purity and luminescent properties of these phosphors are investigated. LaBSiO5:Tb3+ phosphors show intense green emission, and LaBSiO5 phosphors doped with Ce3+ show blue–violet emission under UV light excitation. LaBSiO5 phosphors co‐doped with Ce3+ and Tb3+ exhibit blue–violet and green emission under excitation by UV light. The blue–violet emission is due to the 5d–4f transition of Ce3+ and the green emission is ascribed to the 5D47 F5 transition of Tb3+. The spectral overlap between the excitation band of Tb3+ and the emission band of Ce3+ supports the occurrence of energy transfer from Ce3+ to Tb3+, and the energy transfer process was investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In the present study, Na3(SO4)X (X = F or Cl) halosulphate phosphors have been synthesized by the solid‐state diffusion method. The phase formation of the compounds Na3(SO4)F and Na3(SO4)Cl were confirmed by X‐ray powder diffraction (XRD) measurement. Photoluminescence (PL) excitation spectrum measurement of Na3(SO4)F:Ce3+ and Na3(SO4)Cl:Ce3+ shows this phosphor can be efficiently excited by near‐ultraviolet (UV) light and presents a dominant luminescence band centred at 341 nm for Ce3+, which is responsible for energy transfer to Dy3+and Mn2+ ions. The efficient Ce3+ → Dy3+ energy transfer in Na3(SO4)F and Na3(SO4)Cl under UV wavelength was observed due to 4 F9/2 to 6H15/2 and 6H13/2 level, while Ce3+ → Mn2+ was observed due to 4 T1 state to 6A1. The purpose of the present study is to develop and understanding the photoluminescence properties of Ce3+‐, Dy3+‐ and Mn2+‐doped fluoride and chloride Na3(SO4)X (X = F or Cl) luminescent material, which can be the efficient phosphors in many applications, such as scintillation applications, TL dosimetry and the lamp industry, etc. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Nickel tolerant callus lines of Setaria italica L. were developed from callus cultures grown on MS medium supplemented with 0.5 mg·dm−3 kinetin+2.0 mg·dm−3 2,4-D+2.0 mg·dm−3 Ni+2. Standard growth parameters such as callus fresh and dry weight, growth tolerance index were used as indicators of nickel toxicity. Measurements as early as 2 weeks after the beginning of the treatments did not yield consistent results. However, growth tolerance index at 4, and 8 weeks after the beginning of treatments yielded significant differences among the non-tolerant and tolerant calli. The tolerant calli has enhanced growth at 2.0 mg·dm−3 Ni+2 while non-tolerant calli showed a reverse trend in growth in the presence of 2.0–2.5 mg·dm−3 of nickel. The tolerant calli differentiated into mass of embryogenic calli within 4 weeks of culture which could be maintained for prolonged period without loss of regenerative capacity.  相似文献   

10.
Pyrophosphates K2AEP2O7 (AE = Ca, Sr) prepared by the classical solid‐state technique and activated with Ce3+ are described. Intense emission was observed in K2AEP2O7 (AE = Ca, Sr). The effect of Mn2+ co‐doping was studied. The broad emission peak of Mn2+ was observed at 534 nm in K2SrP2O7:Ce3+ and at 539 nm in K2CaP2O7:Ce3+, Mn2+. Mn2+ emission was greatly enhanced by addition of the sensitizer Ce3+ due to efficient energy transfer from Ce3+ to Mn2+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The KNaSO4 microphosphor doped with Ce or Ce and Dy prepared by a wet chemical method was studied by scanning electron microscopy (SEM) and characterized by photoluminescence (PL). KNaSO4 has a 5‐µm particle size detected by SEM. The KNaSO4:Ce3+ spectrum shows a single emission band at 327 nm for an excitation of 269 nm due to 5d → 4f transition of the Ce3+ ion, indicating weak spin orbiting coupling of the Ce3+ ground state. Efficient energy transfer takes place from Ce3+ → Dy3+ sublattices indicating that Ce3+ could effectively sensitize Dy3+ (orange emission) and that the Ce3+ emission weakens significantly in KNaSO4. The powder form of prepared KNaSO4 show negligible change in morphologies and hence no effect on the particle size. The characteristics of this powder could provide improved luminescence properties. The development and understanding of this photoluminescence and the effect of Dy3+ on KNaSO4: Ce3+ are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
KNaSO4 microphosphor doped with Ce,Gd and Ce,Tb and prepared by a wet chemical method was studied using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) characterization. KNaSO4 has a 5‐µm particle size detected by SEM. KNaSO4:Ce3+,Tb3+ showed blue and green emission (at 494 nm, 557 nm, 590 nm) of Tb3+ due to 5D47FJ (J = 4, 5, 6) transitions. KNaSO4:Ce3+,Gd3+ showed luminescence in the ultraviolet (UV) light region at 314 nm for an excitation at 271 nm wavelength. It was observed that efficient energy transfer took place from Ce3+ → Gd3+ and Ce3+ → Tb3+ sublattices indicating that Ce3+ could effectively sensitize Gd3+ or Tb3+ (green emission). Ce3+ emission weakened and Gd3+ or Tb3+ enhanced the emission significantly in KNaSO4. This paper discusses the development and understanding of photoluminescence and the effect of Tb3+ and Gd3+ on KNaSO4:Ce3+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The formation of radical species during the reaction of tert-butyl hydroperoxide and hypochlorous acid has been investigated by spin trapping and chemiluminescence. A superposition of two signals appeared incubating tert-butyl hydroperoxide with hypochlorous acid in the presence of the spin trap &#102 -(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The first signal (aN = 1.537mT, a&#103H = 0.148mT) was an oxidation product of POBN caused by the action of hypochlorous acid. The second spin adduct (aN = 1.484mT, a&#103H = 0.233mT) was derived from a radical species that was formed in the result of reaction of tert-butyl hydroperoxide with hypochlorous acid. Similarly, a superposition of two signals was also obtained using the spin trap N-tert-butyl- &#102 -phenylnitrone (PBN). tert-Butyl hydroperoxide was also treated with Fe2+ or Ce4+ in the presence of POBN. Using Fe2+ a spin adduct with a N= 1.633mT and a&#103H = 0.276mT was observed. The major spin adduct formed with Ce4+ was characterised by αN = 1.480mT and a&#103H = 0.233mT. The reaction of tert-butyl hydroperoxide with hypochlorous acid was accompanied by a light emission, that time profile and intensity were identical to those emission using Ce4+. The addition of Fe2+ to tert-butyl hydroperoxide yielded a much smaller chemiluminescence. Thus, tert-butyl hydroperoxide yielded in its reaction with hypochlorous acid or Ce4+ the same spin adduct and the same luminescence profile. Because Ce4+ is known to oxidise organic hydroperoxides to peroxyl radical species, it can be concluded that a similar reaction takes place in the case of hypochlorous acid.  相似文献   

14.
Complementary DNA (cDNA) encoding the new versatile peroxidase from the ligninolytic basidiomycete Pleurotus eryngii has been expressed in the ascomycete Emericella nidulans. In recombinant E. nidulans cultures, the pH reached values as high as 8.3, correlating with a sharp decrease in peroxidase activity. Peroxidase was rapidly inactivated at alkaline pH, but was comparatively stable at acidic pH. The peroxidase inactivation in alkaline buffer could be reversed by adding Ca2+ and lowering the pH. However, reactivation did not result after incubating the enzyme in non-buffered E. nidulans cultures that reached pH 7.5. To optimize recombinant peroxidase production, the effect of controlling the pH in E. nidulans bioreactor cultures was studied. An extended growth period, and a significant increase in the recombinant peroxidase level (5.3-fold higher activity than in the bioreactor without pH control) was obtained when the pH was maintained at 6.8, showing that culture pH is an important parameter for recombinant peroxidase production.  相似文献   

15.
Ce3+‐doped orthosilicate oxyapatite NaY9(SiO4)6O2 phosphors NaY9–x(SiO4)6O2:xCe3+ were prepared by a conventional high‐temperature solid‐state reaction method, and their spectroscopic characteristics were systematically investigated. The occupancies of Ce3+ ions at two different sites (Wyckoff 6 h and 4f sites) in NaY9(SiO4)6O2 were determined. The influence of doping concentration on the emission intensity of Ce3+ was investigated and the critical distance Rc was estimated in terms of the concentration quenching data.  相似文献   

16.
In order to improve the luminescent performance of silicate blue phosphors, Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ phosphors were synthesized using one‐step calcination of a precursor prepared by chemical co‐precipitation. The crystal structure and luminescent properties of the phosphors were analyzed using X‐ray diffraction and fluorescence spectrophotometry, respectively. Because the activated ions (Eu2+) can occupy two different types of sites (Sr1 and Sr2), the emission spectrum of Eu2+ excited at 350 nm contains two single bands (EM1 and EM2) in the wavelength range 400–550 nm, centered at 463 nm, and the emission intensity first increases and then decreases with increasing concentrations of Eu2+ ions. Co‐doping of Ce3+ ions can greatly enhance the emission intensity of Eu2+ by transferring its excitation energy to Eu2+. Because of concentration quenching, a higher substitution concentration of Ce3+ can lead to a decrease in the intensity. Meanwhile, the quantum efficiency of the phosphor is improved after doping with Ce3+, and a blue shift phenomenon is observed in the CIE chromaticity diagram. The results indicate that Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ can be used as a potential new blue phosphor for white light‐emitting diodes.  相似文献   

17.
The cyanobacteriaAnabaena torulosa andAnabaena L-31 require sodium (Na+) for growth on N2 but not in the presence of NH4 +. Na+-starved cultures show relatively little or no nitrogenase activity although they differentiate normal heterocysts. Nitrogenase activity appears rapidly on addition of Na+ to Na+-starved cultures. The time course of appearance of activity after addition of Na+ suggests that Na+ is involved in activation of the existing enzyme rather than in its de novo synthesis.  相似文献   

18.
The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P m) and the growth rate constant (k) were determined, which showed that values of P m and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.  相似文献   

19.
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

20.
Tissue-specific age-dependent changes were observed in Na+K+-, Ca2+-, and Mg2+-ATPase activities in tropical tasar silkworm, Antheraea mylitta Drury. Maximum enzyme activity was recorded in all the tissues on day 12 (before spinning) in control group of animals. In testis, Na+K+-, Ca2+-, and Mg2+-ATPase activities gradually increased from day 2 to day 12 during fifth larval age and level was maintained up to adult eclosion while, in ovary, a marked decline was noted up to day of adult emergence. Further, a significant and sharp rise was found in ATPase activity in silk gland tissue up to day 12 and afterwards a drastic fall was noted on day 15 (end of spinning) during fifth larval age.Administration of T4 to fifth stage larvae (1 hr old) at doses 0.5–2.0 μg/g significantly elevated the Na+K+-, Ca2+-, and Mg2+-ATPase activities in larval and pupal gonads in a dose-dependent fashion. But, in moths, the enhancement was very much confined to Na+K+- and Ca2+-ATPase in testes and only Ca2+-ATPase in ovaries. Again, in silk glands thyroxine (0.5–2.0 μg/g) caused a significant rise in the all ion-dependent ATPase activities only during the fifth larval stage. Interestingly, higher doses of T4 (4.0 μg/g) caused a significant reduction in Na+K+-, Ca2+- and Mg2+-ATPase in all the tissues almost all the days studied so far. However, lower doses of T4 (0.1 and 0.25 μg/g) remained ineffective in altering the different ion-specific ATPase activities. This study suggests, that mammalian thyroxine has a metabolic influence showing biphasic nature of action in tasar silkworm ATPase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号