首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
The oomycete Phytophthora sojae is a severe pathogen of soybean. Several resistance genes against races of P. sojae exist in soybean but the nature of corresponding avirulence genes is unknown. Clones encoding four different isoforms of a protein elicitor from P. sojae (sojein 1–4) belonging to the class of acidic α-elicitins have been isolated. These 98 amino acid proteins show high homology to elicitins from other Phytophthora species. The different sojein isoforms were expressed in Escherichia coli as His-tagged fusion proteins. Purified sojein as well as recombinant sojein isoforms induce hypersensitive reaction (HR)-like lesions in tobacco but are not active as race-specific elicitors in soybean. However all sojein isoforms induce defence-related genes like those encoding phenylalanine ammonia lyase, glutathione-S-transferase and chalcone synthase in tobacco and soybean plants and cell cultures. It is concluded that sojeins contribute to the induction of defence responses but that they are not involved in race specific recognition of the P. sojae races by soybean plants.  相似文献   

4.
An elicitor of phytoalexin production in soybean (Glycine max L.) tissues was isolated from purified Phytophthora megasperma var. sojae mycelial walls by a heat treatment similar to that used to solubilize the surface antigens from the cell walls of Saccharomyces cerevisiae. The wall-released elicitor is a discrete, minor portion of the P. megasperma var. sojae mycelial walls. The elicitor released from the mycelial walls was divided by diethylaminoethylcellulose and concanavalin A-Sepharose chromatography into four fractions, each having different chemical characteristics. The four fractions were obtained from each of the three races of P. megasperma var. sojae. The corresponding fractions from each of the three races are very similar in composition and elicitor activity. The results suggest that the elicitor activity of each fraction resides in the glucan component of the fraction. Evidence is presented to demonstrate that the elicitors are not race-specific and that the accumulation of glyceollin is not sufficient to account for race-specific resistance.  相似文献   

5.
Lactofen, the active ingredient of the soybean disease resistance-inducing herbicide, Cobra, induces large accumulations of isoflavone conjugates and aglycones in soybean tissues. The predominant isoflavones induced in cotyledon tissues are daidzein (and its conjugates) and formononetin and glycitein aglycones. The latter two isoflavones are usually present only at very low levels in soybean seedling tissues. In leaves, the predominant lactofen-induced isoflavones are daidzein and formononetin aglycones and the malonyl-glucosyl conjugate of genistein. Isoflavone induction also occurs in cells distal to the point of treatment, but is only weakly systemic. Lactofen also induces elicitation competency, the capacity of soybean cells to accumulate the pterocarpan phytoalexin glyceollin in response to glucan elicitors from the cell wall of the pathogen Phytophthora sojae. Comparison of the activity of a series of diphenyl ether herbicides demonstrated that while all diphenyl ethers tested induced some degree of elicitation competency, only certain ones induced isoflavone accumulation in the absence of glucan elicitor. As a group the diphenyl ethers are thought to inhibit protoporhyrinogen oxidase, eventually leading to singlet oxygen generation. Another singlet oxygen generator, rose bengal, also induced elicitation competency, but little isoflavone accumulation. It is hypothesized that diphenyl ether-induced activated oxygen species mimic some aspects of hypersensitive cell death, which leads to elicitation competency in infected tissues.  相似文献   

6.
Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

7.
Graham MY 《Plant physiology》2005,139(4):1784-1794
Lactofen belongs to the diphenylether class of herbicides, which targets protoporphyrinogen oxidase, which in turn causes singlet oxygen generation. In tolerant plants like soybean (Glycine max), the chemical nonetheless causes necrotic patches called "bronzing" in contact areas. Here it is shown that such bronzing is accompanied by cell death, which was quantified from digital microscopic images using Assess Software. Cellular autofluorescence accompanied cell death, and a homolog of the cell death marker gene, Hsr203j, was induced by lactofen in treated soybean tissues. Thus, this form of chemically induced cell death shares some hallmarks of certain types of programmed cell death. In addition to the cell death phenotype, lactofen caused enhanced expressions of chalcone synthase and chalcone reductase genes, mainly in the exposed and immediately adjacent (proximal) cells. Furthermore, isoflavone synthase genes, which are wound inducible in soybean, were up-regulated by lactofen in both proximal and distal cell zones in minimally wounded cotyledons and further enhanced in wounded tissues. Moreover, if the wall glucan elicitor from Phytophthora sojae was present during lactofen treatment, the induction of isoflavone synthase was even more rapid. These results are consistent with the fact that lactofen triggers massive isoflavone accumulations and activates the capacity for glyceollin elicitation competency. In addition, lactofen induces late expression of a selective set of pathogenesis-related (PR) protein genes, including PR-1a, PR-5, and PR-10, mainly in treated proximal tissues. These various results are discussed in the context of singlet oxygen-induced responses and lactofen's potential as a disease resistance-inducing agent.  相似文献   

8.
Intact soybean (Glycine max L. [Merr.]) tissues show distinct proximal and distal cell responses to the Phytophthora sojae (Kauf. and Gerde.) wall glucan elicitor. Proximal cells respond with accumulations of glyceollin and phenolic polymers, whereas distal cells respond with an increase of isoflavone conjugates. Comparison of the activities of the P. sojae glucan in the classical cut cotyledon and a cotyledon infiltration assay suggests that the proximal, but not the distal, responses to elicitor require tissue wounding. Washing the surface of cut cotyledons prior to elicitor treatment also greatly diminishes the proximal responses, which can be restored in a dose-dependent manner by prior treatment of the washed cells with wound exudate from cut "donor" cotyledons. Thus, discrete wound-associated factors, which we term elicitation competency factors, are required for the proximal cell response to the glucan elicitor. The wound factors induce a competent state that is transient in nature. Maximal elicitor response is seen 2 to 3 h after wounding, and cells become elicitor nonresponsive after 4 h. Competency is markedly affected by the age of tissues; cotyledons become more inherently competent as they approach senescence. The time course of attainment of the competent state and its duration are strongly affected by light and temperature. Since the wound-associated competency factors can also be obtained from washings of hypersensitive lesions, we hypothesize that similar competency factors may be released from hypersensitively dying cells in incompatible infections. This event may program the immediately surrounding cells to make them competent for the proximal defense responses.  相似文献   

9.
10.
11.
Legume iso/flavonoids have been implicated in the nodulation process, but questions remain as to their specific role(s), and no unequivocal evidence exists showing that these compounds are essential for nodulation. Two hypotheses suggest that the primary role of iso/flavonoids is their ability to induce rhizobial nod gene expression and/or their ability to modulate internal root auxin concentrations. The present work provides direct, genetic evidence that isoflavones are essential for nodulation of soybean roots because of their ability to induce the nodulation genes of Bradyrhizobium japonicum. Expression of isoflavone synthase (IFS), a key enzyme in the biosynthesis of isoflavones, is specifically induced by B. japonicum. When IFS was silenced using RNA interference in soybean hairy root composite plants, these plants had severely reduced nodulation. Surprisingly, pre-treatment of B. japonicum or exogenous application to the root system of either of the major soybean isoflavones, daidzein or genistein, failed to restore normal nodulation. Silencing of chalcone reductase led to very low levels of daidzein and increased levels of genistein, but did not affect nodulation, suggesting that the endogenous production of genistein was sufficient to support nodulation. Consistent with a role for isoflavones as endogenous regulators of auxin transport in soybean roots, silencing of IFS resulted in altered auxin-inducible gene expression and auxin transport. However, use of a genistein-hypersensitive B. japonicum strain or purified B. japonicum Nod signals rescued normal nodulation in IFS-silenced roots, indicating that the ability of isoflavones to modulate auxin transport is not essential to nodulation.  相似文献   

12.
13.
Soybean phytophthora resistance gene Rps8 maps closely to the Rps3 region   总被引:9,自引:0,他引:9  
Root and stem rot is one of the major diseases of soybean. It is caused by the oomycete pathogen Phytophthora sojae. A series of resistance genes (Rps) have been providing soybean with reasonable protection against this pathogen. Among these genes, Rps8, which confers resistance to most P. sojae isolates, recently has been mapped. However, the most closely linked molecular marker was mapped at about 10 cM from Rps8. In this investigation, we attempted to develop a high-density genetic map of the Rps8 region and identify closely linked SSR markers for marker-assisted selection of this invaluable gene. Bulk segregant analysis was conducted for the identification of SSR markers that are tightly linked to Rps8. Polymorphic SSR markers selected from the Rps8 region failed to show cosegregation with Phytophthora resistance. Subsequently, bulk segregant analysis of the whole soybean genome and mapping experiments revealed that the Rps8 gene maps closely to the disease resistance gene-rich Rps3 region.  相似文献   

14.
The ability of β-glucosylase I, a soybean cell wall β-glucosyl hydrolase, to degrade elicitors of phytoalexin accumulation was studied. Extensive β-glucosylase I treatment of the glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae results in hydrolysis of 77% of the glucosidic bonds of the elicitor and destruction of 94% of its activity. Soybean cell walls contain some additional factor, probably one or more additional enzymes, which can assist β-glucosylase I in hydrolyzing the glucan elicitor. This was demonstrated by the more rapid hydrolysis of the glucan elicitor by a mixture of soybean cell wall enzymes (containing β-glucosylase I). In a single treatment, the mixture of cell wall enzymes hydrolyzed 91% of the glucosidic bonds and destroyed 85% of the activity of the elicitor. The enzymes from soybean cell walls will also hydrolyze elicitor-active oligoglucosides prepared from the mycelial walls of Phytophthora megasperma var. sojae. The active oligoglucosides are more susceptible than the glucan elicitor to hydrolysis by these enzymes. The mixture of cell wall enzymes or β-glucosylase I, by itself, hydrolyzes more than 96% of the glucosidic bonds and destroys more than 99% of the activity of the oligoglucoside elicitor. Two possible advantages for the existence of these enzymes in the walls of soybean cells are discussed.  相似文献   

15.
We have used map-based approaches to clone a locus containing two genes, Avr1b-1 and Avr1b-2, required for avirulence of the oomycete pathogen Phytophthora sojae (Kaufmann & Gerdemann) on soybean plants carrying resistance gene Rps1b. Avr1b-1 was localized to a single 60-kb bacterial artificial chromosome (BAC) clone by fine-structure genetic mapping. Avr1b-1 was localized within the 60-kb region by identification of an mRNA that is expressed in a race-specific and infection-specific manner and that encodes a small secreted protein. When the Avr1b-1 protein was synthesized in the yeast Pichia pastoris and the secreted protein infiltrated into soybean leaves, it triggered a hypersensitive response specifically in host plants carrying the Rps1b resistance gene. This response eventually spread to the entire inoculated plant. In some isolates of P. sojae virulent on Rps1b-containing cultivars, such as P7081 (race 25) and P7076 (race 19), the Avr1b-1 gene had numerous substitution mutations indicative of strong divergent selection. In other isolates, such as P6497 (race 2) and P9073 (race 25), there were no substitutions in Avr1b-1, but Avr1b-1 mRNA did not accumulate. Genetic complementation experiments with P6497 revealed the presence of a second gene, Avr1b-2, required for the accumulation of Avr1b-1 mRNA. Avr1b-2 was genetically mapped to the same BAC contig as Avr1b-1, using a cross between P7064 (race 7) and P6497. The Avr1k gene, required for avirulence on soybean cultivars containing Rps1k, was mapped to the same interval as Avr1b-1.  相似文献   

16.
利用高效液相色谱法和实时定量PCR方法,分别测定了2个异黄酮含量显著差异的大豆品种鲁黑豆2号(LHD2)和南汇早黑豆(NHZ)在子粒发育过程中的异黄酮含量变化以及异黄酮合成相关酶基因的表达模式变化,试图分析异黄酮积累与各基因表达量变化的相关关系。结果表明在大豆子粒发育过程中,异黄酮含量逐渐升高,而不同异黄酮合成相关酶基因的表达趋势不同,CHS7、CHS8、CHR、CHI1A和IFS2的表达趋势与异黄酮积累模式基本一致,而IFS1和CHI1B1的表达趋势与异黄酮积累模式相反。IFR的表达模式在2个大豆品种中存在相反的趋势,在LHD2中与异黄酮组分积累趋势相反,而在NHZ中与异黄酮组分积累趋势相同。结果还表明,同一基因家族中不同基因在子粒发育过程中的表达量也存在差异。查尔酮合酶基因家族中CHS7和CHS8以及查尔酮异构酶基因家族的CHI1A的表达水平相对其他成员较高,异黄酮合酶基因家族中IFS2的表达量显著高于IFS1的表达量,预示这些基因家族在大豆子粒异黄酮积累过程中存在功能分化。此外,各基因表达模式与异黄酮积累的相关分析结果表明,不同基因表达模式与异黄酮积累的相关性在2个品种中也不尽相同。LHD2中CHS7、CHS8和IFS2在子粒发育过程中的表达量变化与不同异黄酮组分呈显著正相关,CHI1B1基因的表达量变化与不同异黄酮组分呈显著负相关。而在NHZ中,IFR在子粒发育过程中的表达量变化与多个异黄酮组分呈显著正相关。这预示了不同大豆品种异黄酮含量差异的潜在遗传基础。各异黄酮合成相关酶基因表达量变化的相关分析表明,在2个品种中,苯丙氨酸水解酶PAL1与4CL,4CL与CHS2以及CHS1与IFS2基因的表达量均呈现显著正相关。表明这些基因可能通过协同作用共同调控异黄酮的合成与积累。这些结果为今后利用基因工程提高大豆异黄酮含量奠定了基础。  相似文献   

17.
18.
《Plant science》1988,54(3):203-209
Immersion of roots of 2-day-old soybean seedlings (Glycine max cv. Harosoy 63) into solutions of several glucan elicitors caused the accumulation to various degrees of the soybean phytoalexin glyceollin. Laminarin and polytran proved to be more effective elicitors in this system than the glucan elicitor from Phytophthora megasperma f.sp. glycinea (Pmg). Digitonin and tomatin caused, in addition to glyceollin accumulation, the deposition of callose in the rhizodermis. Pretreatment of the soybean roots with laminarin effected an increase in resistance of the seedlings against a compatible race of Pmg.  相似文献   

19.
Graham MY  Graham TL 《Plant physiology》1991,97(4):1445-1455
Phytophthora megasperma Drechs. f. sp. glycinea Kuan & Erwin (PMG) cell wall glucan has been extensively characterized as an elicitor of the pterocarpan phytoalexins, the glyceollins in soybean (Glycine max L.). Just recently, this glucan was shown to be a potent elicitor of conjugates of the isoflavones, daidzein and genistein as well. Here we report that PMG wall glucan also induces a rapid and massive accumulation of phenolic polymers in soybean cotyledon cells proximal to the point of elicitor application. Deposition of phenolic polymers is over then times that in wounded controls within just 4 hours of elicitor treatment and reaches a maximum by 24 hours. In the same tissues, isoflavone conjugates begin to accumulate at 8 hours and glyceollin at 12 hours. By 24 hours, the total deposition of wall bound phenolics in elicitor-treated tissues is several times greater than the peak glyceollin and isoflavone responses combined. Histochemical stains and quantitation of phenolic residues released after saponification and nitrobenzene or copper oxide oxidation suggest that the covalently linked phenolics include both lignin- and suberin-like polymers as well as simple esterified coumaric and ferulic acid monomers. Accumulations of phenolic polymers are accompanied by equally rapid and massive increases in activity of a specific group of anionic peroxidases. Although increases in peroxidase activity are not strictly limited to cells immediately adjacent to the area of elicitor treatment, the deposition of phenolic polymers is significantly less extensive in distal cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号