首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Tumor necrosis factor (TNF) alpha is a critical mediator of inflammation; however, TNFalpha is rarely released alone and the "cross-talk" between different classes of inflammatory mediators is largely unexplored. Thromboxane A(2) (TXA(2)) is released during I/R injury and exerts its effects via a G protein-linked receptor (TP). In this study, we found that TXA(2) mimetics stimulate leukocyte adhesion molecule (LAM) expression on endothelium via TPbeta. The potential interaction between TXA(2) and TNFalpha in altering endothelial survival and LAM expression was examined. IBOP, a TXA(2) mimetic, attenuated TNFalpha-induced LAM expression in vitro, in a concentration-dependent manner, by preventing TNFalpha-enhanced gene expression, and also reduced TNFalpha-induced leukocyte adhesion to endothelium both in vitro and in vivo. IBOP abrogated TNFalpha-induced NFkappaB activation in endothelial cells, as determined by reduced IkappaB phosphorylation and NFkappaB nuclear translocation, by inhibiting the assembly of signaling intermediates with the intracellular domain of TNF receptors 1 and 2 in response to TNFalpha. This inhibition resulted from the Galpha(q)-mediated enhancement of STAT1 activation and was reversed by anti-STAT1 antisense oligonucleotides. TNFalpha-mediated TNFR1-FADD association and caspase 8 activation were not inhibited by IBOP co-stimulation, however, resulting in a 2.6-fold increase in endothelial cell apoptosis. By stimulating the vessel wall and inducing endothelial cell apoptosis, TXA(2), in combination with TNFalpha, may hamper the angiogenic response during inflammation or ischemia, thus reducing revascularization and tissue viability.  相似文献   

5.
6.
7.
8.
Kho Y  Kim S  Yoon BS  Moon JH  Kwak S  Park G  Woo J  Oh S  Hong K  Kim S  Kim H  You S  Choi Y 《Animal biotechnology》2008,19(2):89-103
In this study, we show that expression of the Westmead DMBA8 nonmetastatic cDNA 1 (WDNM1) gene was increased upon SFM and/or TNFalpha treatment, with a corresponding increase in apoptotic cells, and gradually decreased following re-stimulation with serum in HC11 mammary epithelial cells. TNFalpha induced WDNM1 expression showed the NFkappaB-dependent mechanism since it's expression was abrogated in IkappaBalphaM (super-repressor of NFkappaB)-transfected cells, but not those transfected with control vector. Furthermore, overexpression of WDNM1 suppressed growth and differentiation, and accelerated apoptosis of HC11 cells. Thus, our results demonstrate that WDNM1 gene expression, regulated by the TNFalpha-NFkappaB signal pathway, is associated with HC11 cell apoptosis.  相似文献   

9.
Tumor necrosis factor alpha (TNFalpha)-stimulated nuclear factor (NF) kappaB activation plays a key role in the pathogenesis of inflammatory bowel disease (IBD). Phosphorylation of NFkappaB inhibitory protein (IkappaB) leading to its degradation and NFkappaB activation, is regulated by the multimeric IkappaB kinase complex, including IKKalpha and IKKbeta. We recently reported that 5-aminosalicylic acid (5-ASA) inhibits TNFalpha-regulated IkappaB degradation and NFkappaB activation. To determine the mechanism of 5-ASA inhibition of IkappaB degradation, we studied young adult mouse colon (YAMC) cells by immunodetection and in vitro kinase assays. We show 5-ASA inhibits TNFalpha-stimulated phosphorylation of IkappaBalpha in intact YAMC cells. Phosphorylation of a glutathione S-transferase-IkappaBalpha fusion protein by cellular extracts or immunoprecipitated IKKalpha isolated from cells treated with TNFalpha is inhibited by 5-ASA. Recombinant IKKalpha and IKKbeta autophosphorylation and their phosphorylation of glutathione S-transferase-IkappaBalpha are inhibited by 5-ASA. However, IKKalpha serine phosphorylation by its upstream kinase in either intact cells or cellular extracts is not blocked by 5-ASA. Surprisingly, immunodepletion of cellular extracts suggests IKKalpha is predominantly responsible for IkappaBalpha phosphorylation in intestinal epithelial cells. In summary, 5-ASA inhibits TNFalpha-stimulated IKKalpha kinase activity toward IkappaBalpha in intestinal epithelial cells. These findings suggest a novel role for 5-ASA in the management of IBD by disrupting TNFalpha activation of NFkappaB.  相似文献   

10.
Tumor necrosis factor alpha (TNFalpha) is a potent pleiotropic cytokine produced by many cells in response to inflammatory stress. The molecular mechanisms responsible for the multiple biological activities of TNFalpha are due to its ability to activate multiple signal transduction pathways, including nuclear factor kappaB (NFkappaB), which plays critical roles in cell proliferation and survival. TNFalpha displays both apoptotic and antiapoptotic properties, depending on the nature of the stimulus and the activation status of certain signaling pathways. Here we show that TNFalpha can lead to the induction of NFkappaB signaling with a concomitant increase in spermidine/spermine N(1)-acetyltransferase (SSAT) expression in A549 and H157 non-small cell lung cancer cells. Induction of SSAT, a stress-inducible gene that encodes a rate-limiting polyamine catabolic enzyme, leads to lower intracellular polyamine contents and has been associated with decreased cell growth and increased apoptosis. Stable overexpression of a mutant, dominant negative IkappaBalpha protein led to the suppression of SSAT induction by TNFalpha in these cells, thereby substantiating a role of NFkappaB in the induction of SSAT by TNFalpha. SSAT promoter deletion constructs led to the identification of three potential NFkappaB response elements in the SSAT gene. Electromobility shift assays, chromatin immunoprecipitation experiments and mutational studies confirmed that two of the three NFkappaB response elements play an important role in the regulation of SSAT in response to TNFalpha. The results of these studies indicate that a common mediator of inflammation can lead to the induction of SSAT expression by activating the NFkappaB signaling pathway in non-small cell lung cancer cells.  相似文献   

11.
Lnk, with APS and SH2-B (Src homology 2-B), belongs to a family of SH2-containing proteins with potential adaptor functions. Lnk regulates growth factor and cytokine receptor-mediated pathways implicated in lymphoid, myeloid, and platelet homeostasis. We have previously shown that Lnk is expressed and up-regulated in vascular endothelial cells (ECs) in response to tumor necrosis factor-alpha (TNFalpha). In this study, we have shown that, in ECs, Lnk down-regulates the expression, at both mRNA and protein levels, of the proinflammatory molecules VCAM-1 and E-selectin induced by TNFalpha. Mechanistically, our data indicated that, in response to TNFalpha, NFkappaB/p65 phosphorylation and translocation as well as IkappaBalpha phosphorylation and degradation were unchanged, suggesting that Lnk does not modulate NFkappaB activity. However, Lnk activates phosphatidylinositol 3-kinase (PI3K) as reflected by Akt phosphorylation. Our results identify endothelial nitric-oxide synthase as a downstream target of Lnk-mediated activation of the PI3K/Akt pathway and HO-1 as a new substrate of Akt. We found that sustained Lnk-mediated activation of PI3K in TNFalpha-activated ECs correlated with the inhibition of ERK1/2 phosphorylation, whereas phosphorylation of p38 and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was unchanged. ERK1/2 inhibition decreases VCAM-1 expression in TNFalpha-treated ECs. Collectively, our results identify the adaptor Lnk as a negative regulator in the TNFalpha-signaling pathway mediating ERK inhibition and suggest a role for Lnk in the interplay between PI3K and ERK triggered by TNFalpha in ECs.  相似文献   

12.
Signaling pathways mediated by tumor necrosis factor alpha   总被引:6,自引:0,他引:6  
  相似文献   

13.
Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca2+-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms.  相似文献   

14.
15.
Cachexia is associated with poor prognosis in patients with chronic disease. Tumor necrosis factor-alpha (TNFalpha) plays a pivotal role in mediating cachexia and has been demonstrated to inhibit skeletal muscle differentiation in vitro. It has been proposed that TNFalpha-mediated activation of NFkappaB leads to down regulation of MyoD, however the mechanisms underlying TNFalpha effects on skeletal muscle remain poorly understood. We report here a novel pathway by which TNFalpha inhibits muscle differentiation through activation of caspases in the absence of apoptosis. TNFalpha-mediated caspase activation and block of differentiation are dependent upon the expression of PW1, but occur independently of NFkappaB activation. PW1 has been implicated previously in p53-mediated cell death and can induce bax translocation to the mitochondria. We show that bax-deficient myoblasts do not activate caspases and differentiate in the presence of TNFalpha, highlighting a role for bax-dependent caspase activation in mediating TNFalpha effects. Taken together, our data reveal that TNFalpha inhibits myogenesis by recruiting components of apoptotic pathways through PW1.  相似文献   

16.
17.
18.
19.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is characterized as an important enzyme for protecting cells from oxidative stress-induced apoptosis and regulating the production of leukotrienes and prostanoids in cells overexpressing PHGPx. We studied whether the expression level of PHGPx fluctuates in polymorphonuclear leukocytes (PMNs) which were exposed to reactive oxygen species (ROS) and inflammatory cytokines at an inflammation site. Human peripheral PMNs up-regulated the expression level of PHGPx following culture with TNF-alpha, but not with IL-1beta, IL-8, and GRO. The up-regulated PHGPx expression was also observed in neutrophil-like cells that differentiated from the human leukemia cell line HL60 only after stimulation with TNF-alpha. However, macrophage-like differentiated HL60 cells and other cell lines, A498, ECV304, HeLa, U937, and HEK293, showed no increase in the PHGPx expression. This up-regulation of PHGPx was inhibited by treatment with the anti-oxidants, pyrrolidine dithiocarbamate, and N-acetyl-L-cysteine, and by inhibitors of NFkappaB and Src kinases. The stimulation of neutrophil-like differentiated HL60 cells with TNF-alpha induced activation of NFkappaB and c-Src kinase, and the activation was attenuated by treatment with the anti-oxidants. Up-regulation in neutrophil-like HL60 cells was also observed following exposure to H(2)O(2). These results indicate that activation of NFkappaB and/or Src kinases through ROS signaling may be involved in the up-regulation of the PHGPx in human PMNs stimulated by TNF-alpha.  相似文献   

20.
Acute myeloid leukemia (AML) cell lines treated by genotoxic agents or by Tumor Necrosis Factor alpha (TNFalpha) acquire potent cytotoxicity towards myeloid cells through activation of granzyme B (GrB)/perforin (PFN) system. Here we first extend this observation to another death receptor activator, Fas Ligand (FasL). Moreover, we analyzed GrB induction signalling pathway in TNFalpha- and FasL-stimulated AML cells. The effects of TNFalpha and FasL on GrB expression were specifically mediated by p38MAPK (Mitogen-activated-protein-kinase) activation. Otherwise, TNFalpha and FasL stimulation led to radical oxygen species (ROS) generation and ASK1 (Apoptosis-signal-regulating-kinase-1) activation. Endogenous activation of ASK1 by either H2O2 or thioredoxin (Trx) reductase inhibition had the same effects as TNFalpha and FasL on GrB up regulation. Altogether, our results suggest that TNFalpha- and FasL-stimulated AML cell lytic induction is regulated by a signalling pathway involving sequentially, ROS generation, Trx oxidation, ASK1 activation, p38MAPK stimulation and GrB induction at mRNA and protein levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号