首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reconstituted the platelet glycoprotein (GP) Ib-IX-mediated activation of the integrin alpha(IIb)beta(3) in a recombinant DNA expression model, and show that 14-3-3 is important in GPIb-IX signaling. CHO cells expressing alpha(IIb)beta(3) adhere poorly to vWF. Cells expressing GPIb-IX adhere to vWF in the presence of botrocetin but spread poorly. Cells coexpressing integrin alpha(IIb)beta(3) and GPIb-IX adhere and spread on vWF, which is inhibited by RGDS peptides and antibodies against alpha(IIb)beta(3). vWF binding to GPIb-IX also activates soluble fibrinogen binding to alpha(IIb)beta(3) indicating that GPIb-IX mediates a cellular signal leading to alpha(IIb)beta(3) activation. Deletion of the 14-3-3-binding site in GPIbalpha inhibited GPIb-IX-mediated fibrinogen binding to alpha(IIb)beta(3) and cell spreading on vWF. Thus, 14-3-3 binding to GPIb-IX is important in GPIb-IX signaling. Expression of a dominant negative 14-3-3 mutant inhibited cell spreading on vWF, suggesting an important role for 14-3-3. Deleting both the 14-3-3 and filamin-binding sites of GPIbalpha induced an endogenous integrin-dependent cell spreading on vWF without requiring alpha(IIb)beta(3), but inhibited vWF-induced fibrinogen binding to alpha(IIb)beta(3). Thus, while different activation mechanisms may be responsible for vWF interaction with different integrins, GPIb-IX-mediated activation of alpha(IIb)beta(3) requires 14-3-3 interaction with GPIbalpha.  相似文献   

2.
The platelet receptor for von Willebrand factor (VWF), glycoprotein (GP) Ib-IX, mediates initial platelet adhesion and activation. It is known that the cytoplasmic domain of GPIbbeta is phosphorylated at Ser(166) by cAMP-dependent protein kinase (PKA). To understand the physiological role of GPIbbeta phosphorylation, a GPIb-IX mutant replacing Ser(166) of GPIbbeta with alanine (S166A) and a deletion mutant lacking residues 166-181 of GPIbbeta (Delta165) were constructed. These mutants, expressed in Chinese hamster ovary (CHO) cells, showed an enhanced VWF-binding function compared with wild type GPIb-IX. Treatment of CHO cells expressing wild type GPIb-IX with a PKA inhibitor, PKI, reduced Ser(166) phosphorylation and also enhanced VWF binding to GPIb-IX. Furthermore, cells expressing S166A or Delta165 mutants showed a significantly enhanced adhesion to immobilized VWF under flow conditions. Consistent with the studies in CHO cells, treatment of platelets with PKI enhanced VWF binding to platelets. In contrast, a PKA stimulator, forskolin, reduced VWF binding and VWF-induced platelet agglutination, which was reversed by PKI. Thus, PKA-mediated phosphorylation of GPIbbeta at Ser(166) negatively regulates VWF binding to GPIb-IX and is one of the mechanisms by which PKA mediates platelet inhibition.  相似文献   

3.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

4.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

5.
14-3-3zeta is an effector of tau protein phosphorylation   总被引:7,自引:0,他引:7  
Neurofibrillary tangles associated with Alzheimer's disease are composed mainly of paired helical filaments that are formed by the aggregation of abnormally phosphorylated microtubule-associated protein tau. 14-3-3, a highly conserved protein family that exists as seven isoforms and regulates diverse cellular processes is present in neurofibrillary tangles (Layfield, R., Fergusson, J., Aitken, A., Lowe, J., Landon, M., Mayer, R. J. (1996) Neurosci. Lett. 209, 57-60). The role of 14-3-3 in Alzheimer's disease pathogenesis is not known. In this study, we found that the 14-3-3zeta isoform is associated with tau in brain extract and profoundly stimulates cAMP-dependent protein kinase catalyzed in vitro phosphorylation on Ser(262)/Ser(356) located within the microtubule-binding region of tau. 14-3-3zeta binds to both phosphorylated and nonphosphorylated tau, and the binding site is located within the microtubule-binding region of tau. From brain extract, 14-3-3zeta co-purifies with microtubules, and tubulin blocks 14-3-3zeta-tau binding. Among four 14-3-3 isoforms tested, beta and zeta but not gamma and epsilon associate with tau. Our data suggest that 14-3-3zeta is a tau protein effector and may be involved in the abnormal tau phosphorylation occurring during Alzheimer's disease ontogeny.  相似文献   

6.
Adhesion of platelets to sites of vascular injury is critical for hemostasis and thrombosis and is dependent on the binding of the vascular adhesive protein von Willebrand factor (vWf) to the glycoprotein (GP) Ib-V-IX complex on the platelet surface. A unique but poorly defined characteristic of this receptor/ligand interaction is its ability to support platelet adhesion under conditions of high shear stress. To examine the structural domains of the GPIb-V-IX complex involved in mediating cell adhesion under flow, we have expressed partial (GPIb-IX), complete (GPIb-V-IX), and mutant (GPIbalpha cytoplasmic tail mutants) receptor complexes on the surface of Chinese hamster ovary (CHO) cells and examined their ability to adhere to a vWf matrix in flow-based adhesion assays. Our studies demonstrate that the partial receptor complex (GPIb-IX) supports CHO cell tethering and rolling on a bovine or human vWf matrix under flow. The adhesion was specifically inhibited by an anti-GPIbalpha blocking antibody (AK2) and was not observed with CHO cells expressing GPIbbeta and GPIX alone. The velocity of rolling was dependent on the level of shear stress, receptor density, and matrix concentration and was not altered by the presence of GPV. In contrast to selectins, which mediate cell rolling under conditions of low shear (20-200 s-1), GPIb-IX was able to support cell rolling at both venous (150 s-1) and arterial (1500-10,500 s-1) shear rates. Studies with a mutant GPIbalpha receptor subunit lacking the binding domain for actin-binding protein demonstrated that the association of the receptor complex with the membrane skeleton is not essential for cell tethering or rolling under low shear conditions, but is critical for maintaining adhesion at high shear rates (3000-6000 s-1). These studies demonstrate that the GPIb-IX complex is sufficient to mediate cell rolling on a vWf matrix at both venous and arterial levels of shear independent of other platelet adhesion receptors. Furthermore, our results suggest that the association between GPIbalpha and actin-binding protein plays an important role in enabling cells to remain tethered to a vWf matrix under conditions of high shear stress.  相似文献   

7.
Numb is thought to participate in clathrin-dependent endocytosis by directly interacting with the clathrin-associated adaptor complex AP-2, although the underlying mechanisms are unknown. Numb is also known to be phosphorylated at Ser(264)in vitro and in vivo. Here, we found that Numb is phosphorylated in vitro by Ca(2+)/calmodulin-dependent protein kinase I on Ser(283). This phosphorylation was also observed in transfected COS-7 cells, indicating its physiological relevance. Pull-down experiments showed that the phosphorylation of Numb impaired its binding to the AP-2 complex and simultaneously recruited 14-3-3 proteins in vitro. Based on experiments using Numb mutants, both the initial phosphorylation of Ser(264) and the subsequent phosphorylation of Ser(283) are sufficient to abolish the binding of Numb to AP-2 and to promote the interaction with 14-3-3 protein. These findings suggest a novel mechanism for the regulation of Numb-mediated endocytosis, namely through direct phosphorylation.  相似文献   

8.
9.
AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.  相似文献   

10.
The deubiquitinating enzyme UBPY, also known as USP8, regulates cargo sorting and membrane traffic at early endosomes. Here we demonstrate the regulatory mechanism of the UBPY catalytic activity. We identified 14-3-3 epsilon, gamma, and zeta as UBPY-binding proteins using co-immunoprecipitation followed by mass spectrometric analysis. The 14-3-3 binding of UBPY was inhibited by mutating the consensus 14-3-3-binding motif RSYS(680)SP, by phosphatase treatment, and by competition with the Ser(680)-phosphorylated RSYS(680)SP peptide. Metabolic labeling with [(32)P]orthophosphate and immunoblotting using antibody against the phosphorylated 14-3-3-binding motif showed that Ser(680) is a major phosphorylation site in UBPY. These results indicated that 14-3-3s bind to the region surrounding Ser(680) in a phosphorylation-dependent manner. The mutation at Ser(680) led to enhanced ubiquitin isopeptidase activity of UBPY toward poly-ubiquitin chains and a cellular substrate, epidermal growth factor receptor, in vitro and in vivo. Moreover, addition of 14-3-3epsilon inhibited the UBPY activity in vitro. Finally, UBPY was dephosphorylated at Ser(680) and dissociated from 14-3-3s in the M phase, resulting in enhanced activity of UBPY during cell division. We conclude that UBPY is catalytically inhibited in a phosphorylation-dependent manner by 14-3-3s during the interphase, and this regulation is cancelled in the M phase.  相似文献   

11.
The 14-3-3 proteins play a central role in the regulation of cell growth, cycling, and apoptosis by modulating the functional activities of key signaling proteins. Through binding to a phosphoserine motif, 14-3-3 alters target proteins activities by sequestering them, relocalizing them, conformationally altering their functional activity, or by promoting interaction with other proteins. These functions of 14-3-3 are facilitated by, if not dependent on, its dimeric structure. We now show that the dimeric status of 14-3-3 is regulated by site-specific serine phosphorylation. We found that a sphingosine-dependent kinase phosphorylates 14-3-3 in vitro and in vivo on a serine residue (Ser58) located within the dimer interface. Furthermore, by developing an antibody that specifically recognizes 14-3-3zeta phosphorylated on Ser58 and employing native-PAGE and cross-linking techniques, we found that 14-3-3 phosphorylated on Ser58 is monomeric both in vitro and in vivo. Phosphorylated 14-3-3 was detected solely as a monomer, indicating that phosphorylation of a single monomer within a dimer is sufficient to disrupt the dimeric structure. Significantly, phosphorylation-induced monomerization did not prevent 14-3-3 binding to a phosphopeptide target. We propose that this regulated monomerization of 14-3-3 controls its ability to modulate the activity of target proteins and thus may have significant implications for 14-3-3 function and the regulation of many cellular processes.  相似文献   

12.
The phospho-site adapter protein 14-3-3 binds to target proteins at amino acid sequences matching the consensus motif Arg-X-X-Ser/Thr-X-Pro, where the serine or threonine residue is phosphorylated and X is any amino acid. The dual-specificity phosphatase CDC25B, which is involved in cell cycle regulation, contains five 14-3-3 binding motifs, but 14-3-3 preferentially binds to the motif at Ser309 in CDC25B1 (or Ser323 in CDC25B3). In the present study, we demonstrate that amino acid residues C-terminal to the 14-3-3 binding motif strongly affect the efficiency of 14-3-3 binding. Alanine substitutions at residues downstream of the Ser309 motif dramatically reduced 14-3-3 binding, although phosphorylation of Ser309 was unaffected. We also observed that binding of endogenous 14-3-3 to mutant CDC25B occurred less efficiently than to the wild type. Mutants to which 14-3-3 cannot bind efficiently tend to be located in the nucleus, although not as specifically as the alanine substitution mutant of Ser309. These results indicate that amino acid sequences C-terminal to the consensus binding site have an important role in the efficient binding of 14-3-3 to at least CDC25B, which may partly explain why some consensus sequences are inactive as 14-3-3 binding sites.  相似文献   

13.
14-3-3 proteins are abundant binding proteins involved in many biologically important processes. 14-3-3 proteins bind to other proteins in a phosphorylation-dependent manner and function as scaffold molecules modulating the activity of their binding partners. In this work, we studied the conformational changes of 14-3-3 C-terminal stretch, a region implicated in playing a role in the regulation of 14-3-3. Time-resolved fluorescence and molecular dynamics were used to investigate structural changes of the C-terminal stretch induced by phosphopeptide binding and phosphorylation at Thr232, a casein kinase I phosphorylation site located within this region. A tryptophan residue placed at position 242 was exploited as an intrinsic fluorescence probe of the C-terminal stretch dynamics. Other tryptophan residues were mutated to phenylalanine. Time-resolved fluorescence measurements revealed that phosphopeptide binding changes the conformation and increases the flexibility of 14-3-3zeta C-terminal stretch, demonstrating that this region is directly involved in ligand binding. Phosphorylation of 14-3-3zeta at Thr232 resulted in inhibition of phosphopeptide binding and suppression of 14-3-3-mediated enhancement of serotonin N-acetyltransferase activity. Time-resolved fluorescence of Trp242 also revealed that phosphorylation at Thr232 induces significant changes of the C-terminal stretch conformation. In addition, molecular dynamic simulations suggest that phosphorylation at Thr232 induces a more extended conformation of 14-3-3zeta C-terminal stretch and changes its interaction with the rest of the 14-3-3 molecule. These results indicate that the conformation of the C-terminal stretch plays an important role in the regulation of 14-3-3 binding properties.  相似文献   

14.
Regulation of tyrosine hydroxylase by stress-activated protein kinases   总被引:2,自引:0,他引:2  
Recombinant human tyrosine hydroxylase (hTH1) was found to be phosphorylated by mitogen and stress-activated protein kinase 1 (MSK1) at Ser40 and by p38 regulated/activated kinase (PRAK) on Ser19. Phosphorylation by MSK1 induced an increase in Vmax and a decrease in Km for 6-(R)-5,6,7,8-tetrahydrobiopterin (BH4), while these kinetic parameters were unaffected as a result of phosphorylation by PRAK. Phosphorylation of both Ser40 and Ser19 induced a high-affinity binding of 14-3-3 proteins, but only the interaction of 14-3-3 with Ser19 increased the hTH1 activity. The 14-3-3 proteins also inhibited the rate of dephosphorylation of Ser19 and Ser40 by 82 and 36%, respectively. The phosphorylation of hTH1 on Ser19 caused a threefold increase in the rate of phosphorylation of Ser40. These studies provide new insights into the possible roles of stress-activated protein kinases in the regulation of catecholamine biosynthesis.  相似文献   

15.
16.
14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin   总被引:8,自引:0,他引:8  
Gohla A  Bokoch GM 《Current biology : CB》2002,12(19):1704-1710
The functionality of the actin cytoskeleton depends on a dynamic equilibrium between filamentous and monomeric actin. Proteins of the ADF/cofilin family are essential for the high rates of actin filament turnover observed in motile cells through regulation of actin polymerization/depolymerization cycles. Rho GTPases act through p21-activated kinase-1 (Pak-1) and Rho kinase to inhibit cofilin activity via the LIM kinase (LIMK)-mediated phosphorylation of cofilin on Ser3. We report the identification of 14-3-3zeta as a novel phosphocofilin binding protein involved in the maintenance of the cellular phosphocofilin pool. A Ser3 phosphocofilin binding protein was purified from bovine brain and was identified as 14-3-3zeta by mass spectrometry. The phosphorylation-dependent interaction between cofilin and 14-3-3zeta was confirmed in pulldown and coimmunoprecipitation experiments. Both Ser3 phosphorylation and a 14-3-3 recognition motif in cofilin are necessary for 14-3-3 binding. The expression of 14-3-3zeta increases phosphocofilin levels, and the coexpression of 14-3-3zeta with LIMK further elevates phosphocofilin levels and potentiates LIMK-dependent effects on the actin cytoskeleton. This potentiation of cofilin action appears to be a result of the protection of phosphocofilin from phosphatase-mediated dephosphorylation at Ser3 by bound 14-3-3zeta. Taken together, these results suggest that 14-3-3zeta proteins may play a dynamic role in the regulation of cellular actin structures through the maintenance of phosphocofilin levels.  相似文献   

17.
18.
Szewczuk LM  Tarrant MK  Sample V  Drury WJ  Zhang J  Cole PA 《Biochemistry》2008,47(39):10407-10419
Serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AANAT)] is a key circadian rhythm enzyme that drives the nocturnal production of melatonin in the pineal. Prior studies have suggested that its light and diurnal regulation involves phosphorylation on key AANAT Ser and Thr residues which results in 14-3-3zeta recruitment and changes in catalytic activity and protein stability. Here we use protein semisynthesis by expressed protein ligation to systematically explore the effects of single and dual phosphorylation of AANAT on acetyltransferase activity and relative affinity for 14-3-3zeta. AANAT Thr31 phosphorylation on its own can enhance catalytic efficiency up to 7-fold through an interaction with 14-3-3zeta that lowers the substrate K m. This augmented catalytic profile is largely abolished by double phosphorylation at Thr31 and Ser205. A possible basis for this difference is the dual anchoring of doubly phosphorylated AANAT via one 14-3-3zeta heterodimer. We have developed a novel solution phase assay for accurate K D measurements of 14-3-3zeta-AANAT interaction using 14-3-3zeta fluorescently labeled with rhodamine by expressed protein ligation. We have also generated a doubly fluorescently labeled AANAT which can be used to assess the stability of this protein in a live cell, real-time assay by fluorescence resonance energy transfer measured by microscopic imaging. These studies offer new insights into the molecular basis of melatonin regulation and 14-3-3zeta interaction.  相似文献   

19.
Integrin-induced cytoskeletal reorganizations are initiated by Cdc42 and Rac1 but little is known about mechanisms by which integrins activate these Rho GTPases. 14-3-3 proteins are adaptors implicated in binding and regulating the function and subcellular location of numerous signaling molecules. In platelets, the 14-3-3 zeta isoform interacts with the glycoprotein (GP) Ibalpha subunit of the adhesion receptor GP Ib-IX. In this study, we show that integrin-induced activation of Cdc42, activation of Rac, cytoskeletal reorganizations, and cell spreading were inhibited in Chinese hamster ovary cells expressing full-length GP Ibalpha compared with GP Ibalpha lacking the 14-3-3 zeta binding site. Activation of Rho GTPases and cytoskeletal reorganizations were restored by expression of 14-3-3 zeta. Spreading in cells expressing truncated GP Ibalpha was inhibited by co-expressing a chimeric receptor containing interleukin 2 receptor alpha and GP Ibalpha cytoplasmic domain. These results identify a previously unrecognized function of 14-3-3 zeta, that of mediating integrin-induced signaling. They show that 14-3-3 zeta mediates Cdc42 and Rac activation. They also reveal a novel function of platelet GP Ib-IX, that of regulating integrin-induced cytoskeletal reorganizations by sequestering 14-3-3 zeta. Signaling across integrins initiates changes in cell behavior such as spreading, migration, differentiation, apoptosis, or cell division. Thus, introduction of the 14-3-3 zeta binding domain of GP Ibalpha into target cells might provide a method for regulating integrin-induced pathways in a variety of pathological conditions.  相似文献   

20.
Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2) mediates multiple p38 MAPK-dependent inflammatory responses. To define the signal transduction pathways activated by MAPKAPK2, we identified potential MAPKAPK2 substrates by using a functional proteomic approach consisting of in vitro phosphorylation of neutrophil lysate by active recombinant MAPKAPK2, protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and phosphoprotein identification by peptide mass fingerprinting with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and protein database analysis. One of the eight candidate MAPKAPK2 substrates identified was the adaptor protein, 14-3-3zeta. We confirmed that MAPKAPK2 interacted with and phosphorylated 14-3-3zeta in vitro and in HEK293 cells. The chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated p38-MAPK-dependent phosphorylation of 14-3-3 proteins in human neutrophils. Mutation analysis showed that MAPKAPK2 phosphorylated 14-3-3zeta at Ser-58. Computational modeling and calculation of theoretical binding energies predicted that both phosphorylation at Ser-58 and mutation of Ser-58 to Asp (S58D) compromised the ability of 14-3-3zeta to dimerize. Experimentally, S58D mutation significantly impaired both 14-3-3zeta dimerization and binding to Raf-1. These data suggest that MAPKAPK2-mediated phosphorylation regulates 14-3-3zeta functions, and this MAPKAPK2 activity may represent a novel pathway mediating p38 MAPK-dependent inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号