首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gymnarchus niloticus, a wave-type African electric fish, performs its jamming avoidance response by relying solely upon afferent signals and does not use corollary discharges from the pacemaker nucleus in the medulla which generates the rhythmicity of electric organ discharges. This is in sharp contrast to the mode of sensory processing found in closely related African pulse-type electric fishes where afferent signals are gated by corollary discharges from the pacemaker for the distinction of exafferent and reafferent stimuli. Does Gymnarchus still possess a corollary discharge mechanism for other behavioral tasks but does not use it for the jamming avoidance response? In this study, I recorded from and labeled medullary neuronal structures that either generate or convey the pacemaker signal for electric organ discharges to examine whether this information is also sent directly to any sensory areas. The pacemaker nucleus was identified as the site of generation of the pacemaking signal. The pacemaker neurons project exclusively to the lateral relay nucleus which, in turn projects exclusively to the medial relay nucleus. Neurons in the medial relay nucleus send unbranched axons to the spinal electromotoneurons. These neurons are entirely devoted to drive the electric organ discharges, and no axon collaterals from these neurons were found to project to any sensory areas. This indicates that Gymnarchus does not possess the neuronal hardware for a corollary discharge mechanism.  相似文献   

2.
《Current biology : CB》2022,32(14):3048-3058.e6
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   

3.
Corollary discharge signals associated with the motor command that elicits the electric organ discharge are prominent in the electrosensory lobe of mormyrid fish (Gnathonemus petersii). Central pathways and structures that convey these signals from the motor command nucleus to the electrosensory lobe are known anatomically, but these structures and their contributions to the various corollary discharge phenomena have not been examined physiologically. This study examines one such structure, the mesencephalic command associated nucleus (MCA).Recordings from MCA cells show a highly stereotyped two spike response. The first spike of the response has a latency of about 2.5 ms following the initiation of the electric organ discharge (EOD) motor command which is about 5.5 ms before the occurrence of the EOD.Results from stimulation and lesion experiments indicate that MCA is responsible for: 1) the gate-like corollary discharge-driven inhibition of the knollenorgan pathway; 2) the gate-like corollary discharge-driven excitation of granule cells in the mormyromast regions of the electrosensory lobe; and 3) various excitatory effects on other cells in the mormyromast regions.Some corollary discharge phenomena are still present after MCA lesions, including the earliest corollary discharge effects and the plasticity that follows pairing with electrosensory stimuli. These phenomena must be mediated by structures other than MCA.Abbreviations BCA bulbar command associated nucleus - C EOD motor command - C3 central cerebellar lobule 3 - COM EOD motor command nucleus - DLZ dorsolateral zone of ELL cortex - EGa eminentia granularis anterior - EGp eminentia granularis posterior - ELa nucleus exterolateralis anterior - ELL electrosensory lobe - ELLml molecular layer of ELL cortex - EOD electric organ discharge - gang ganglion layer - gran granule layer - jlem juxtalemniscal region - JLl lateral juxtalobar nucleus - JLm medial juxtalobar nucleus - lat nucleus lateralis - ll lateral lemniscus - MCA mesencephalic command associated nucleus - mol molecular layer - MOml molecular layer of the medial octavolateral nucleus - MRN medullary relay nucleus - MZ medial zone of ELL cortex - nALL anterior lateral line nerve - NELL nucleus of the electrosensory lobe - nX cranial nerve X (vagus) - OT optic tectum - PCA paratrigeminal command associated nucleus - pee praeeminentialis electrosensory tract - plex plexiform layer - prae nucleus praeeminentialis - sublem sublemniscal nucleus - TEL telencephalon - VLZ ventrolateral zone of ELL cortex - vped valvular peduncle  相似文献   

4.
5.
Proteases have a variety of strategies for selecting substrates in order to prevent uncontrolled protein degradation. A recent crystal structure determination of prolyl oligopeptidase has suggested a way for substrate selection involving an unclosed seven-bladed β-propeller domain. We have engineered a disulfide bond between the first and seventh blades of the propeller, which resulted in the loss of enzymatic activity. These results provided direct evidence for a novel strategy of regulation in which oscillating propeller blades act as a gating filter during catalysis, letting small peptide substrates into the active site while excluding large proteins to prevent accidental proteolysis.  相似文献   

6.
7.
To understand the biochemical events that control the generation of superoxide, the effect of inhibiting the respiratory complexes III and IV (C-III and C-IV) and alternative oxidase (AOX) on the rate of superoxide production was analyzed in mitochondria from maize seedlings. To increase superoxide production, it was required to inhibit C-III or C-IV by at least 30% or 50%, respectively. Below this inhibition threshold, AOX exerted the highest degree of control on superoxide production, whereas above it, the highest degree of control was exerted by C-IV. The contribution of C-III to control superoxide production became significant when AOX activity was modulated.  相似文献   

8.
Drain P  Geng X  Li L 《Biophysical journal》2004,86(4):2101-2112
KATP channels assemble from four regulatory SUR1 and four pore-forming Kir6.2 subunits. At the single-channel current level, ATP-dependent gating transitions between the active burst and the inactive interburst conformations underlie inhibition of the KATP channel by intracellular ATP. Previously, we identified a slow gating mutation, T171A in the Kir6.2 subunit, which dramatically reduces rates of burst to interburst transitions in Kir6.2DeltaC26 channels without SUR1 in the absence of ATP. Here, we constructed all possible mutations at position 171 in Kir6.2DeltaC26 channels without SUR1. Only four substitutions, 171A, 171F, 171H, and 171S, gave rise to functional channels, each increasing Ki,ATP for ATP inhibition by >55-fold and slowing gating to the interburst by >35-fold. Moreover, we investigated the role of individual Kir6.2 subunits in the gating by comparing burst to interburst transition rates of channels constructed from different combinations of slow 171A and fast T171 "wild-type" subunits. The relationship between gating transition rate and number of slow subunits is exponential, which excludes independent gating models where any one subunit is sufficient for inhibition gating. Rather, our results support mechanisms where four ATP sites independently can control a single gate formed by the concerted action of all four Kir6.2 subunit inner helices of the KATP channel.  相似文献   

9.
Gating of sensory information can be assessed using an auditory conditioning-test paradigm which measures the reduction in the auditory evoked response to a test stimulus following an initial conditioning stimulus. Recording brainwaves from specific areas of the brain using multiple electrodes is helpful in the study of the neurobiology of sensory gating. In this paper, we use such technology to investigate the role of cannabinoids in sensory gating in the CA3 region of the rat hippocampus. Our experimental results show that application of the exogenous cannabinoid agonist WIN55,212-2 can abolish sensory gating. We have developed a phenomenological model of cannabinoid dynamics incorporated within a spiking neural network model of CA3 with synaptically interacting pyramidal and basket cells. Direct numerical simulations of this model suggest that the basic mechanism for this effect can be traced to the suppression of inhibition of slow GABAB synapses. Furthermore, by working with a simpler mathematical firing rate model we are able to show the robustness of this mechanism for the abolition of sensory gating.  相似文献   

10.
11.
We describe the genetic and kinetic defects in a congenital myasthenic syndrome due to the mutation epsilonA411P in the amphipathic helix of the acetylcholine receptor (AChR) epsilon subunit. Myasthenic patients from three unrelated families are either homozygous for epsilonA411P or are heterozygous and harbor a null mutation in the second epsilon allele, indicating that epsilonA411P is recessive. We expressed human AChRs containing wild-type or A411P epsilon subunits in 293HEK cells, recorded single channel currents at high bandwidth, and determined microscopic rate constants for individual channels using hidden Markov modeling. For individual wild-type and mutant channels, each rate constant distributes as a Gaussian function, but the spread in the distributions for channel opening and closing rate constants is greatly expanded by epsilonA411P. Prolines engineered into positions flanking residue 411 of the epsilon subunit greatly increase the range of activation kinetics similar to epsilonA411P, whereas prolines engineered into positions equivalent to epsilonA411 in beta and delta subunits are without effect. Thus, the amphipathic helix of the epsilon subunit stabilizes the channel, minimizing the number and range of kinetic modes accessible to individual AChRs. The findings suggest that analogous stabilizing structures are present in other ion channels, and possibly allosteric proteins in general, and that they evolved to maintain uniformity of activation episodes. The findings further suggest that the fundamental gating mechanism of the AChR channel can be explained by a corrugated energy landscape superimposed on a steeply sloped energy well.  相似文献   

12.
The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate.  相似文献   

13.
14.
Post-translational covalent modification by ubiquitin and ubiquitin-like proteins (UBLs) is a major eukaryotic mechanism for regulating protein function. In general, each UBL has its own E1 that serves as the entry point for a cascade. The E1 first binds the UBL and catalyzes adenylation of the UBL's C-terminus, prior to promoting UBL transfer to a downstream E2. Ubiquitin's Arg 72, which corresponds to Ala72 in the UBL NEDD8, is a key E1 selectivity determinant: swapping ubiquitin and NEDD8 residue 72 identity was shown previously to swap their E1 specificity. Correspondingly, Arg190 in the UBA3 subunit of NEDD8's heterodimeric E1 (the APPBP1-UBA3 complex), which corresponds to a Gln in ubiquitin's E1 UBA1, is a key UBL selectivity determinant. Here, we dissect this specificity with biochemical and X-ray crystallographic analysis of APPBP1-UBA3-NEDD8 complexes in which NEDD8's residue 72 and UBA3's residue 190 are substituted with different combinations of Ala, Arg, or Gln. APPBP1-UBA3's preference for NEDD8's Ala72 appears to be indirect, due to proper positioning of UBA3's Arg190. By contrast, our data are consistent with direct positive interactions between ubiquitin's Arg72 and an E1's Gln. However, APPBP1-UBA3's failure to interact with a UBL having Arg72 is not due to a lack of this favorable interaction, but rather arises from UBA3's Arg190 acting as a negative gate. Thus, parallel residues from different UBL pathways can utilize distinct mechanisms to dictate interaction selectivity, and specificity can be amplified by barriers that prevent binding to components of different conjugation cascades.  相似文献   

15.
For optimal proteolytic function, the central core of the proteasome (core particle (CP) or 20S) has to associate with activators. We investigated the impact of the yeast activator Blm10 on proteasomal peptide and protein degradation. We found enhanced degradation of peptide substrates in the presence of Blm10 and demonstrated that Blm10 has the capacity to accelerate proteasomal turnover of the unstructured protein tau-441 in vitro. Mechanistically, proteasome activation requires the opening of a closed gate, which allows passage of unfolded proteins into the catalytic chamber. Our data indicate that gate opening by Blm10 is achieved via engagement of its C-terminal segment with the CP. Crucial for this activity is a conserved C-terminal YYX motif, with the penultimate tyrosine playing a preeminent role. Thus, Blm10 utilizes a gate opening strategy analogous to the proteasomal ATPases HbYX-dependent mechanism. Because gating incompetent Blm10 C-terminal point mutants confers a loss of function phenotype, we propose that the cellular function of Blm10 is based on CP association and activation to promote the degradation of proteasome substrates.  相似文献   

16.
Ye S  Li Y  Chen L  Jiang Y 《Cell》2006,126(6):1161-1173
MthK is a prokaryotic Ca(2+)-gated K(+) channel that, like other ligand-gated channels, converts the chemical energy of ligand binding to the mechanical force of channel opening. The channel's eight ligand-binding domains, the RCK domains, form an octameric gating ring in which Ca(2+) binding induces conformational changes that open the channel. Here we present the crystal structures of the MthK gating ring in closed and partially open states at 2.8 A, both obtained from the same crystal grown in the absence of Ca(2+). Furthermore, our biochemical and electrophysiological analyses demonstrate that MthK is regulated by both Ca(2+) and pH. Ca(2+) regulates the channel by changing the equilibrium of the gating ring between closed and open states, while pH regulates channel gating by affecting gating-ring stability. Our findings, along with the previously determined open MthK structure, allow us to elucidate the ligand gating mechanism of RCK-regulated K(+) channels.  相似文献   

17.
18.
The molecular forces that drive structural transitions between the open and closed states of channels and transporters are not well understood. The gate of the OmpA channel is formed by the central Glu52-Arg138 salt bridge, which can open to form alternate ion pairs with Lys82 and Glu128. To gain deeper insight into the channel-opening mechanism, we measured interaction energies between the relevant side chains by double-mutant cycle analysis and correlated these with the channel activities of corresponding point mutants. The closed central salt bridge has a strong interaction energy of -5.6 kcal mol(-1), which can be broken by forming the open-state salt bridge Glu52-Lys82 (DeltaDeltaG(Inter) = -3.5 kcal mol(-1)) and a weak interaction between Arg138 and Glu128 (DeltaDeltaG(Inter) = -0.6 kcal mol(-1)). A covalent disulfide bond in place of the central salt bridge completely blocks the channel. Growth assays indicate that this gating mechanism could physiologically contribute to the osmoprotection of Escherichia coli cells from environmental stress.  相似文献   

19.
We investigate and then modify the hypothesis that a glutamate side chain acts as the fast gate in ClC-0 channels. We first create a putative open-state configuration of the prokaryotic ClC Cl- channel using its crystallographic structure as a basis. Then, retaining the same pore shape, the prokaryotic ClC channel is converted to ClC-0 by replacing all the nonconserved polar and charged residues. Using this open-state channel model, we carry out molecular dynamics simulations to study how the glutamate side chain can move between open and closed configurations. When the side chain extends toward the extracellular end of the channel, it presents an electrostatic barrier to Cl- conduction. However, external Cl- ions can push the side chain into a more central position where, pressed against the channel wall, it does not impede the motion of Cl- ions. Additionally, a proton from a low-pH external solution can neutralize the extended glutamate side chain, which also removes the barrier to conduction. Finally, we use Brownian dynamics simulations to demonstrate the influence of membrane potential and external Cl- concentration on channel open probability.  相似文献   

20.
Activation gating in KcsA is elicited by changes in intracellular proton concentration. Thompson et al. [1] identified a charge cluster around the inner gate that plays a key role in defining proton activation in KcsA. Here, through functional and spectroscopic approaches, we confirmed the role of this charge cluster and now provide a mechanism of pH-dependent gating. Channel opening is driven by a set of electrostatic interactions that include R117, E120 and E118 at the bottom of TM2 and H25 at the end of TM1. We propose that electrostatic compensation in this charge cluster stabilizes the closed conformation at neutral pH and that its disruption at low pH facilitates the transition to the open conformation by means of helix-helix repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号