首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of bacterial cell biology has been revolutionized in the last decade by improvements in imaging capabilities which have revealed that bacterial cells, previously thought to be non-compartmentalized, possess an intricate higher-order organization. Many bacterial proteins localize to specific subcellular domains and regulate the spatial deployment of other proteins, DNA and lipids. Recently, the surprising discovery was made that bacterial RNA molecules are also specifically localized. However, the mechanisms that underlie bacterial cell architecture are just starting to be unraveled. The limited number of distribution patterns observed thus far for bacterial proteins and RNAs, and the similarity between the patterns exhibited by these macromolecules, suggest that the processes that underlie their localization are inextricably linked. We discuss these spatial arrangements and the insights that they provide on processes, such as localized translation, protein complex formation, and crosstalk between bacterial machineries.  相似文献   

2.
生物体内存在各种内源性活性物质,帮助生物进行信号传递与代谢调控。正常条件下,细胞环境不断变化,内源性小分子的时 空分布在生物体内保持动态平衡。但当它们的种类和浓度超过生理过程所需的限定范围时,就会影响细胞活性,进而导致疾病,甚至 是肿瘤和癌症的发生。因此,这些活性物质在体内活动的实时追踪及可视化对人们理解生命现象、研究疾病发生机制十分重要。与传 统有机染料相比,金属配合物发光(荧光/磷光)探针因光稳定性好、生理功能易调控等优势,已成为生物体系小分子活性物质示踪和 成像的研究热点。依照不同的作用靶点,对应用于生物体系的金属配合物探针的最新进展进行分类和总结,并展望金属配合物在生物 成像中的未来应用,以期可以为人们继续设计出新的具有良好示踪成像性能金属配合物探针提供参考,并从分子水平理解探针作用及 癌症治疗的机制。  相似文献   

3.
4.
Bacteria show asymmetric subcellular distribution of many proteins involved in diverse cellular processes such as chemotaxis, motility, actin polymerization, chromosome partitioning and cell division. In many cases, the specific subcellular localization of these proteins is critical for proper regulation and function. Although cellular organization of the bacterial cell clearly plays an important role in cell physiology, systematic studies to uncover asymmetrically distributed proteins have not been reported previously. In this study, we undertook a proteomics approach to uncover polar membrane proteins in Escherichia coli. We identified membrane proteins enriched in E. coli minicells using a combination of two-dimensional electrophoresis and mass spectrometry. Among a total of 173 membrane protein spots that were consistently detected, 36 spots were enriched in minicell membranes, whereas 15 spots were more abundant in rod cell membranes. The minicell-enriched proteins included the inner membrane proteins MCPs, AtpA, AtpB, YiaF and AcrA, the membrane-associated FtsZ protein and the outer membrane proteins YbhC, OmpW, Tsx, Pal, FadL, OmpT and BtuB. We immunolocalized two of the minicell-enriched proteins, OmpW and YiaF, and showed that OmpW is a bona fide polar protein whereas YiaF displays a patchy membrane distribution with a polar and septal bias.  相似文献   

5.
The tetrodecamycins are a group of secondary metabolites that are characterized by the presence of a tetronate ring in their structure. Originally discovered for their antibiotic activity against Photobacterium damselae ssp. piscicida, the causative agent of pseudotuberculosis in fish, this family of molecules has also been shown to have potent antibiotic activity against methicillin-resistant Staphylococcus aureus. Due to their small size and highly cyclized nature, they represent an unusual member of the much larger group of bioactive molecules called the tetronates. Herein, we review what is known about the mechanism of action of these molecules and also present a hypothesis for their biosynthesis. A deeper understanding of the tetrodecamycins will provide a more holistic view of the tetronate-family, provide new chemical probes of bacterial biology, and may provide therapeutic lead molecules.  相似文献   

6.
Ho TQ  Zhong Z  Aung S  Pogliano J 《The EMBO journal》2002,21(7):1864-1872
Targeting of DNA molecules to specific subcellular positions is essential for efficient segregation, but the mechanisms underlying these processes are poorly understood. In Escherichia coli, several plasmids belonging to different incompatibility groups (F, P1 and RK2) localize preferentially near the midcell and quartercell positions. Here we compare the relative positions of these three plasmids using fluorescence in situ hybridization. When plasmids F and P1 were localized simultaneously using differentially labeled probes, the majority of foci (approximately 75%) were well separated from each other. Similar results were found when we compared the subcellular localization of F with RK2, and RK2 with P1: regardless of the number of foci per cell or growth conditions, most of the foci (70-80%) were not in close proximity to one another. We also localized RK2 in Pseudomonas aeruginosa and Vibrio cholerae, and found that plasmid RK2 localization is conserved across bacterial species. Our results suggest that each plasmid has its own unique subcellular address, implying a mechanism for the stable co-existence of plasmids in which subcellular targeting plays a major role.  相似文献   

7.
The generation and maintenance of subcellular organization in bacteria is critical for many cell processes and properties, including growth, structural integrity and, in pathogens, virulence. Here, we investigate the mechanisms by which the virulence protein IcsA (VirG) is distributed on the bacterial surface to promote efficient transmission of the bacterium Shigella flexneri from one host cell to another. The outer membrane protein IcsA recruits host factors that result in actin filament nucleation and, when concentrated at one bacterial pole, promote unidirectional actin-based motility of the pathogen. We show here that the focused polar gradient of IcsA is generated by its delivery exclusively to one pole followed by lateral diffusion through the outer membrane. The resulting gradient can be modified by altering the composition of the outer membrane either genetically or pharmacologically. The gradient can be reshaped further by the action of the protease IcsP (SopA), whose activity we show to be near uniform on the bacterial surface. Further, we report polar delivery of IcsA in Escherichia coli and Yersinia pseudotuberculosis, suggesting that the mechanism for polar delivery of some outer membrane proteins is conserved across species and that the virulence function of IcsA capitalizes on a more global mechanism for subcellular organization.  相似文献   

8.
Lesser CF  Miller SI 《The EMBO journal》2001,20(8):1840-1849
Bacterial virulence proteins that are translocated into eukaryotic cells were expressed in Saccharomyces cerevisiae to model human infection. The subcellular localization patterns of these proteins in yeast paralleled those previously observed during mammalian infection, including localization to the nucleus and plasma membrane. Localization of Salmonella SspA in yeast provided the first evidence that SspA interacts with actin in living cells. In many cases, expression of the bacterial virulence proteins conferred genetically exploitable growth phenotypes. In this way, Yersinia YopE toxicity was demonstrated to be linked to its Rho GTPase activating protein activity. YopE blocked polarization of the yeast cytoskeleton and cell cycle progression, while SspA altered polarity and inhibited depolymerization of the actin cytoskeleton. These activities are consistent with previously proposed or demonstrated effects on higher eukaryotes and provide new insights into the roles of these proteins in pathogenesis: SspA in directing formation of membrane ruffles and YopE in arresting cell division. Thus, study of bacterial virulence proteins in yeast is a powerful system to determine functions of these proteins, probe eukaryotic cellular processes and model mammalian infection.  相似文献   

9.
Glycan-mediated interactions are essential in many biological processes and regulate a wide variety of cellular functions. However, characterizing these interactions is difficult because glycan biosynthesis is not template driven and because carbohydrate recognition events are usually of low affinity and transient. Photocrosslinking carbohydrate probes can form a covalent bond with molecules in close proximity on UV irradiation and are capable of capturing interactions between glycans and glycan-binding proteins in situ. Because of these advantages, multiple photocrosslinking carbohydrate probes have been designed and applied to study the biological functions of glycans. This review will discuss recent advances in the development of novel photocrosslinking functional groups and the design of photocrosslinking probes to detect interactions mediated by glycolipids, peptidoglycan, and multivalent carbohydrate ligands. These probes have demonstrated the potential to address some of the major challenges in the study of glycan-mediated interactions in both model systems and in more complex biological settings.  相似文献   

10.
The alpha1beta1 and alpha2beta1 integrins belong to a family of cell-surface molecules involved in structural contacts and signal-transduction events across the cell membrane. Employing two-dimensional substrates coated with fluorescently labeled type I collagen, we have discovered a novel subcellular matrix remodeling event that is particular to cells that express the fibrillar collagen receptor alpha2beta1. Cells expressing alpha1beta1 also perform this collagen organization process, but less proficiently. This work will provide a basis for subsequent studies of cell-mediated collagen fibril assembly.  相似文献   

11.
Many plant response systems are linked to complex dynamics in signaling molecules such as Ca(2+) and reactive oxygen species (ROS) and to pH. Regulatory changes in these molecules can occur in the timeframe of seconds and are often limited to specific subcellular locales. Thus, to understand how Ca(2+) , ROS and pH form part of plants' regulatory networks, it is essential to capture their rapid dynamics with resolutions that span the whole plant to subcellular dimensions. Defining the spatio-temporal signaling 'signatures' of these regulators at high resolution has now been greatly facilitated by the generation of plants expressing a range of GFP-based bioprobes. For Ca(2+) and pH, probes such as the yellow cameleon Ca(2+) sensors (principally YC2.1 and 3.6) or the pHluorin and H148D pH sensors provide a robust suite of tools to image changes in these ions. For ROS, the tools are much more limited, with the GFP-based H(2) O(2) sensor Hyper representing a significant advance for the field. However, with this probe, its marked pH sensitivity provides a key challenge to interpretation without using appropriate controls to test for potentially coupled pH-dependent changes. Most of these Ca(2+) -, ROS- and pH-imaging biosensors are compatible with the standard configurations of confocal microscopes available to many researchers. These probes therefore represent a readily accessible toolkit to monitor cellular signaling. Their use does require appreciation of a minimal set of controls but these are largely related to ensuring that neither the probe itself nor the imaging conditions used perturb the biology of the plant under study.  相似文献   

12.
Traditional textbook representations of the prokaryotic cytoplasm show an amorphous, unstructured amalgamation of proteins and small molecules in which a randomly arranged chromosome resides. The development and application of a swathe of microscopic techniques over the last 10 years in particular, has shown this image of the microbial cell to be incorrect: the cytoplasm is highly structured with many proteins carrying out their assigned functions at specific subcellular locations; bacteria contain cytoskeletal elements including microtubule, actin and intermediate filament homologues; the chromosome is not randomly folded and is organized in such a way as to facilitate efficient segregation upon cell division. This review will concentrate on recent advances in our understanding of subcellular architecture and the techniques that have led to these discoveries.  相似文献   

13.
A fundamental question of eukaryotic cell biology is how membrane organelles are organised and interact with each other. Cell biologists address these questions by characterising the structural features of membrane compartments and the mechanisms that coordinate their exchange. To do so, they must rely on variety of cargo molecules and treatments that enable targeted perturbation, localisation, and labelling of specific compartments. In this context, bacterial toxins emerged in cell biology as paradigm shifting molecules that enabled scientists to not only study them from the side of bacterial infection but also from the side of the mammalian host. Their selectivity, potency, and versatility made them exquisite tools for uncovering much of our current understanding of membrane trafficking mechanisms. Here, we will follow the steps that lead toxins until their intracellular targets, highlighting how specific events helped us comprehend membrane trafficking and establish the fundamentals of various cellular organelles and processes. Bacterial toxins will continue to guide us in answering crucial questions in cellular biology while also acting as probes for new technologies and applications.  相似文献   

14.
Sphingolipids and glycosphingolipids are classes of structurally and functionally important lipids that regulate multiple cellular processes, including membrane organization, proliferation, cell cycle regulation, apoptosis, transport, migration, and inflammatory signalling pathways. Imbalances in sphingolipid levels or subcellular localization result in dysregulated cellular processes and lead to the development and progression of multiple disorders, including polycystic kidney disease. This review will describe metabolic pathways of glycosphingolipids with a focus on the evidence linking glycosphingolipid mediated regulation of cell signalling, lipid microdomains, cilia, and polycystic kidney disease. We will discuss molecular mechanisms of glycosphingolipid dysregulation and their impact on cystogenesis. We will further highlight how modulation of sphingolipid metabolism can be translated into new approaches for the treatment of polycystic kidney disease and describe current clinical studies with glucosylceramide synthase inhibitors in Autosomal Dominant Polycystic Kidney Disease.  相似文献   

15.
Molecular imaging methods to visualize myriad biochemical processes in bacteria have traditionally been dependent upon molecular biology techniques to incorporate fluorescent biomolecules (e.g., fusion proteins). Such methods have been instrumental in our understanding of how bacteria function but are not without drawbacks, including potential perturbation to native protein expression and function. To overcome these limitations, the use of fluorescent small-molecule probes has gained much attention. Here, we highlight examples from the recent literature that showcase the utility of small-molecule probes for the fluorescence imaging of bacterial cells, including electrophilic, metabolic, and enzyme-activated probes. Although the use of these types of compounds for bacterial imaging is still relatively new, the selected examples demonstrate the exciting potential of these critical tools in the exploration of bacterial physiology.  相似文献   

16.
Most time lapse microscopy experiments studying bacterial processes ie growth, progression through the cell cycle and motility have been performed on thin nutrient agar pads. An important limitation of this approach is that dynamic perturbations of the experimental conditions cannot be easily performed. In eukaryotic cell biology, fluidic approaches have been largely used to study the impact of rapid environmental perturbations on live cells and in real time. However, all these approaches are not easily applicable to bacterial cells because the substrata are in all cases specific and also because microfluidics nanotechnology requires a complex lithography for the study of micrometer sized bacterial cells. In fact, in many cases agar is the experimental solid substratum on which bacteria can move or even grow. For these reasons, we designed a novel hybrid micro fluidic device that combines a thin agar pad and a custom flow chamber. By studying several examples, we show that this system allows real time analysis of a broad array of biological processes such as growth, development and motility. Thus, the flow chamber system will be an essential tool to study any process that take place on an agar surface at the single cell level.  相似文献   

17.
Genetically encoded sensors allow real-time monitoring of biological molecules at a subcellular resolution. A tremendous variety of such sensors for biological molecules became available in the past 15 years, some of which became indispensable tools that are used routinely in many laboratories.One of the exciting applications of genetically encoded sensors is the use of these sensors in investigating cellular transport processes. Properties of transporters such as kinetics and substrate specificities can be investigated at a cellular level, providing possibilities for cell-type specific analyses of transport activities. In this article, we will demonstrate how transporter dynamics can be observed using genetically encoded glutamine sensor as an example. Experimental design, technical details of the experimental settings, and considerations for post-experimental analyses will be discussed.  相似文献   

18.
Arp2/3 complex mediates the nucleation of actin filaments in multiple subcellular processes, and is activated by nucleation-promoting factors (NPFs) from the Wiskott-Aldrich Syndrome family. In exciting new developments, this family has grown by three members: WASH, WHAMM and JMY, which extend the repertoire of dynamic membrane structures that are remodeled following Arp2/3 activation in vivo. These novel NPFs share an actin- and Arp2/3-interacting WCA module, and combine Arp2/3 activation with additional biochemical functions, including capping protein inhibition, microtubule engagement or Arp2/3-independent actin nucleation, none of which had been previously associated with canonical WCA-harboring proteins. Uncovering the physiological relevance of these unique activities will require concerted efforts from multiple disciplines, and is sure to impact our understanding of how the cytoskeleton controls so many dynamic subcellular events.  相似文献   

19.
Carbohydrates act as ligands in many biological processes, including the folding and secretion of proteins, cell-cell recognition, adhesion, and sporulation in the Bacillus genus. Fluorescent-labeled disaccharide glycoconjugates have been applied to evaluate binding to bacterial spores assuming that the spore surface is covered with carbohydrates. This study has shown that specific recognition of bacterial spores is based on interactions between disaccharide glycoconjugates acting as ligands and monosaccharide units expressed on the exterior of bacterial spores. Using fluorophore-assisted carbohydrate electrophoresis (FACE), carbohydrates that are expressed on the exterior of the spores were enumerated. The findings have an impact on how to improve ligand selection, essential for sensor development. In addition, the findings provide new information for inhibition of bacterial spores, and in general, demonstrate how carbohydrates function as recognition signals in nature.  相似文献   

20.

Background

Life is a constant flow of electrons via redox couples. Redox reactions determine many if not all major cellular functions. Until recently, redox processes remained hidden from direct observation in living systems due to the lack of adequate methodology. Over the last years, imaging tools including small molecule probes and genetically encoded sensors appeared, which provided, for the first time, an opportunity to visualize and, in some cases, quantify redox reactions in live cells. Genetically encoded fluorescent redox probes, such as HyPer, rxYFP and roGFPs, have been used in several models, ranging from cultured cells to transgenic animals, and now enough information has been collected to highlight advantages and pitfalls of these probes.

Scope of review

In this review, we describe the main types of genetically encoded redox probes, their essential properties, advantages and disadvantages. We also provide an overview of the most important, in our opinion, results obtained using these probes. Finally, we discuss redox-dependent photoconversions of GFP and other prospective directions in redox probe development.

Major conclusions

Fluorescent protein-based redox probes have important advantages such as high specificity, possibility of transgenesis and fine subcellular targeting. For proper selection of a redox sensor for a particular model, it is important to understand that HyPer and roGFP2-Orp1 are the probes for H2O2, whereas roGFP1/2, rxYFP and roGFP2-Grx1 are the probes for GSH/GSSG redox state. Possible pH changes should be carefully controlled in experiments with HyPer and rxYFP.

General significance

Genetically encoded redox probes are the only instruments allowing real-time monitoring of reactive oxygen species and thiol redox state in living cells and tissues. We believe that in the near future the palette of FP-based redox probes will be expanded to red and far-red parts of the spectrum and to other important reactive species such as NO, O2 and superoxide. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号