首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The biochemical challenge of microbial pathogenicity   总被引:3,自引:1,他引:2  
In the past decade there has been a revival of interest in microbial pathogenicity. The reasons for this revival are two-fold. First, infectious disease is still with us despite the impact of the antibiotic era; for example, the rise of bacterial and fungal infections in compromised patients and the lack of a good general antiviral drug. Second, the subject of microbial pathogenicity is ripe for application of techniques of biochemistry, molecular biology and genetics that have developed in other areas of biology over the past twenty years; and the potential of these techniques is particularly attractive to young people, who are entering the field in increasing numbers.
In this lecture I shall survey the methods and difficulties of investigating microbial pathogenicity and what we know of the main aspects of the subject at the molecular level. I shall use bacteria as examples because more is known about them than other types of microbes. Lack of space prevents quoting original papers in such a wide-ranging task; in most cases reference is made to authorative reviews.  相似文献   

2.
Little MH 《Organogenesis》2011,7(4):229-241
The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies.  相似文献   

3.
《Organogenesis》2013,9(4):229-241
The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies.  相似文献   

4.
Extensive research on molecular genetics in recent decades has provided a wealth of information regarding the underlying mechanisms of primary immunodeficiency diseases. The microarray technology has made its entry into the molecular biology research area and hereby enabled signature expression profiling of whole species genomes. Perhaps no other methodological approach has transformed molecular biology more in recent years than the use of microarrays. Microarray technology has led the way from studies of the individual biological functions of a few related genes, proteins or, at best, pathways towards more global investigations of cellular activity. The development of this technology immediately yielded new and interesting information, and has produced more data than can be currently dealt with. It has also helped to realize that even a 'horizontally exhaustive' molecular analysis is insufficient. Applications of this tool in primary immunodeficiency studies have generated new information, which has led to a better understanding of the underlying basic biology of the diseases. Also, the technology has been used as an exploratory tool to disease genes in immunodeficiency diseases of unknown cause as in the case of the CD3Delta-chain and the MAPBPIP deficiency. For X-linked agammaglobulinemia, the technique has provided better understanding of the genes influenced by Btk. There is considerable hope that the microarray technology will lead to a better understanding of disease processes and the molecular phenotypes obtained from microarray experiments may represent a new tool for diagnosis of the disease.  相似文献   

5.
Views of classical biological problems changed dramatically with the rise of molecular biology as a common framework. It was indeed the new language of life sciences. Molecular biology increasingly moved us towards a unified view of developmental genetics as ideas and techniques were imported to vertebrates from other biological systems where genetics was in a more advanced state. The ultimate advance has been the ability to actually perform genetic manipulations in vertebrate organisms that were almost unthinkable before. During the last two decades these technical advances entered into and affected the research on ear development. These events are still very recent and have been with us for no longer than two decades, which is the reason for the title of this article. This new scenario forms the basis of the current and productive work of many laboratories, and this is what this Special Issue of The International Journal of Developmental Biology wants to show, presenting a snapshot of insights at the beginning of the 21st Century. In this article, we give an overview of the topics that are addressed in this Ear Development Special Issue, and also we take the opportunity to informally dig into the genealogy of some of those topics, trying to link the current work with some classical work of the past.  相似文献   

6.
《Endocrine practice》2007,13(5):534-541
ObjectiveTo review the growing impact of molecular biology and genetics on clinical endocrinology.MethodsMedical literature, databases, and Web sites describing genetics and genomic medicine with relevance for clinical endocrinology were reviewed.ResultsMany monogenic disorders can now be explained at the molecular level and the diagnosis can be established through mutational analysis. The ability to establish a molecular diagnosis is relevant for carrier detection and genetic counseling. In contrast to the significant advances in monogenic disorders, the current knowledge about the genetic components contributing to the pathogenesis of complex disorders is still relatively modest and is a major focus of current research efforts. Molecular biology already has an important impact on therapy in endocrine disorders. A broad spectrum of recombinant peptides and proteins are used in daily practice, eg, insulin and insulin analogues. Moreover, the increasingly detailed understanding of the molecular pathogenesis of cancer is leading to the development of novel and more specific inhibitors. While genetic testing has many advantages, it is important that physicians and patients are aware of potential limitations. They include, among others, technical limitations and allelic and nonallelic heterogeneity. These limitations need to be discussed in detail with patients and relatives, and it is often useful to involve a genetic counselor before obtaining informed consent by the individuals undergoing testing.ConclusionMolecular biology and genetics play an increasingly important role for the diagnosis and therapy of endocrine disorders. Challenges for the future include the elucidation of the genetic components contributing to complex disorders, eg, diabetes mellitus type 2, and the development of cheaper and comprehensive DNA sequencing technologies. Lastly, it is important that there is continuing attention directed towards the ethical, social, and legal aspects surrounding genetic medicine. (Endocr Pract, 2007;13: 534-541)  相似文献   

7.
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the “War on Cancer” in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a “rogue hacker”—one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its “security vulnerabilities” may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology—albeit imbalanced and exaggerated—is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment—a recurring theme that could potentially be exploited therapeutically.  相似文献   

8.
9.
《Biochemical education》1999,27(3):145-149
We have developed a course in Molecular Diagnostics suitable as an upper division/Master’s level elective class for Biology, Microbiology, and Biochemistry majors who have already been introduced to basic genetics and molecular biology. The course provides an intensive hands-on laboratory experience in current molecular techniques for disease diagnosis coupled with lecture on major biological topics and concepts underlying disease and disease processes. Its structure and content make the course appropriate not only for students who envision careers in molecular diagnosis, but also for those aspiring to the teaching, research, or medical professions.  相似文献   

10.
《Epigenetics》2013,8(6):664-666
Advances in sequencing and detection technology over the past two decades, highlighted by the data explosion brought about by the human genome project, have transformed what was previously assumed to be a relatively simple genetic landscape into a new picture where the so-called “dark matter” of the genome has stolen the spotlight from the not so hip protein-coding genes. The simplified central dogma of molecular biology, in which a gene encodes for a protein via a messenger RNA (mRNA), is still at the core of genetics but is now caught in a much more complex web of regulation by the genomic region previously known as “junk” DNA. Books such as Non-coding RNAs and epigenetic regulation of gene expression, published by Caister Academic Press, become essential guidelines to help us understand the current status of the very fast paced field of RNA research, which has only just started to uncover the roles of non-coding RNAs (ncRNAs) in the regulation of gene expression.  相似文献   

11.
While our understanding of the developmental biology of the skeleton, like that of virtually every other subject in biology, has been transformed by recent advances in human and mouse genetics, we still know very little, in molecular and genetic terms, about skeletal physiology. Thus, among the many questions that are largely unexplained are the following: why is osteoporosis mainly a women's disease? How is bone mass maintained nearly constant between the end of puberty and the arrest of gonadal functions? Molecular genetics has emerged as a powerful tool to study previously unexplored aspects of the physiology of the skeleton. Among mammals, mice are the most promising animals for this experimental work. This has been previously demonstrated e.g. through the tremendous impact of the different osteopetrotic models on our molecular understanding of osteoclastic bone resorption. Until recently the only way of studying bone loss situations and osteoporosis in mice was by using ovariectomy with all its limitations. Today, however, we have access to more sophisticated osteoporotic mouse-models from four different origins: Transgenic mice (HSV-TK), knock-out mice (OPG), inbred-strains (SAMP6), and through physiological modulation (icv application). These new models have already taught us several important lessons. The first is, that bone remodeling is more than just an autocrine/paracrine process. Multiple experimental evidence has demonstrated that the latter regulation exists, but genetics prove that there is no functional cross-control between resorption and formation. The second lesson is, that remodeling is, at least in part, subject to central regulation. Thus, osteoporosis is partly a central or hypothalamic disease. However, the most dramatic change and the most important advantage we feel is, that today we have models to test a new hypothesis regarding the etiology of osteoporosis before it turns to dogma. Taken together, mouse-studies may lead to a shift in our physiological understanding of skeleton biology and to the emergence of novel paradigms. These, in turn, should help us to devise new treatments for degenerative diseases of the skeleton such as osteoporosis and its associated clinical problems.  相似文献   

12.
Dror AA  Avraham KB 《Neuron》2010,68(2):293-308
Research in the genetics of hearing and deafness has evolved rapidly over the past years, providing the molecular foundation for different aspects of the mechanism of hearing. Considered to be the most common sensory disorder, hearing impairment is genetically heterogeneous. The multitude of genes affected encode proteins associated with many different functions, encompassing overarching areas of research. These include, but are not limited to, developmental biology, cell biology, physiology, and neurobiology. In this review, we discuss the broad categories of genes involved in hearing and deafness. Particular attention is paid to a subgroup of genes associated with inner ear gene regulation, fluid homeostasis, junctional complex and tight junctions, synaptic transmission, and auditory pathways. Overall, studies in genetics have provided research scientists and clinicians with insight regarding practical implications for the hearing impaired, while heralding hope for future development of therapeutics.  相似文献   

13.
Genetics is an immense science and the current developments in its methods and techniques as well as the fast emerging tools make it one of the most powerful biological sciences. Indeed, from taxonomy and ecology to physiology and molecular biology, every biological science makes use of genetics techniques and methods at one time or another. In fact, development in genetics is such that it is now possible to characterize and analyze the expression of the whole set of genes of virtually every living organism, even if it is a non-model one. Locusts are notorious for the damage they cause to the ecosystems and economies of the areas affected by their recurrent population outbreaks. To prevent and deal with these outbreaks, we now count on both biological as well as chemical agents that are proving to be successful in reducing the damage that otherwise locust population outbreaks might cause. However, a better, efficient and environmentally friendly solution is still a hoped-for target. In my opinion, the ideal future pesticide should be both environmentally friendly, risk free and species-specific. To reach the knowledge needed for the development of such species-specific anti-locust agent, deep and accurate knowledge of the locusts’ genetics and molecular biology is a must. Since genes and their expression levels lie at the bottom of every biological phenomenon, any species-specific solution to the locust problem requires a good knowledge of these organisms’ genes as well as the quantitative and spatio-temporal dynamics of their expression. To reach such knowledge, collaborative work is needed as well as a clear workflow that, given the fast development in the genetics tools, is not always clear to all research groups. For this reason, here I describe a genetics workflow that should allow taking advantage of the most recent genetics tools and techniques to answer question relating to locust biology. My hope is that the adoption of this and other work strategies by different research groups, especially when the work is a collaborative one, would provide precious information on the biology and the biological phenomena that these economically important organisms exhibit.  相似文献   

14.
15.
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the “War on Cancer” in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a “rogue hacker”—one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its “security vulnerabilities” may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology—albeit imbalanced and exaggerated—is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment—a recurring theme that could potentially be exploited therapeutically.  相似文献   

16.
William H. Stone 《Genetica》1987,73(1-2):169-177
The wide array of papers delivered at this symposium, ranging from population genetics to molecular genetics, is convincing evidence that genetic research with nonhuman primates is in full bloom. In fact, progress has been quite remarkable considering that a significant number of pedigreed colonies of nonhuman primates have been available for less than 25 years, which is hardly enough time to raise 3 generations of chimpanzees, 5 generations of baboons or 6 generations of rhesus monkeys. Were it not for these pedigreed colonies, we would not have been privileged to have this assemblage of papers on behavior, social structure, predisposition to disease and management of breeding colonies. It is indeed exciting that preliminary evidence has been obtained for major genes that play a role in susceptibility to dyslipoproteinemias in baboons, and that monoclonal antibodies and DNA markers are helping us to understand cholesterol metabolism. And thanks to computers, we can now rank animals in a colony in terms of their useful genotypes as well as their productivity. One can not help but be impressed with the commonality of humans and nonhuman primates at the structural and functional levels. For example, the major histocompatibility systems and the maternal-fetal relationships are very similar. We heard that this similarity is even more striking at the chromosomal, biochemical and DNA levels. A provocative question yet to be answered is, “what accounts for the obvious differences between humans and nonhuman primates in view of these incredible similarities?” In light of these advances, this symposium was at the cutting edge of primate genetics and the papers published in this issue of Genetica are certain to be hallmarks in the literature.  相似文献   

17.
Advances in sequencing and detection technology over the past two decades, highlighted by the data explosion brought about by the human genome project, have transformed what was previously assumed to be a relatively simple genetic landscape into a new picture where the so-called “dark matter” of the genome has stolen the spotlight from the not so hip protein-coding genes. The simplified central dogma of molecular biology, in which a gene encodes for a protein via a messenger RNA (mRNA), is still at the core of genetics but is now caught in a much more complex web of regulation by the genomic region previously known as “junk” DNA. Books such as Non-coding RNAs and epigenetic regulation of gene expression, published by Caister Academic Press, become essential guidelines to help us understand the current status of the very fast paced field of RNA research, which has only just started to uncover the roles of non-coding RNAs (ncRNAs) in the regulation of gene expression.  相似文献   

18.
Formal training in computational biology was initiated at Wayne State University in 1990 to meet the needs of the faculty. This was still at a time when the molecular databases and analysis tools could be housed in what is now equivalent to a modern but dated desktop computer. In 1995 the course was expanded to include graduate students to provide these senior students with a foundation in computational biology. This course has armed our students with a requisite set of basic skills that are necessary for a successful career in molecular genetics. It is now an integral component of the graduate program of the Center for Molecular Medicine and Genetics and our experiences in course delivery have been detailed (BioInformatics Methods and Protocols, S. Misener and S. A. Krawetz, eds., Humana Press, Totowa, NJ, 2000.). The course was expanded to a campus-wide unlimited enrollment program for the summer of 2000 to address the needs of our student body. In this review we present our experience with delivering a multidisciplinary campuswide computational biology course to a new and widely diverse student body.  相似文献   

19.
白色念珠菌定植于大多数人群的口腔中,在一定条件下可成为优势菌种而导致感染。基因分型是近年来白念分子生物学研究中的一个热点,随着医学科学技术的发展,由于深部真菌感染比例不断增加,分子生物学方法已经越来越广泛的应用于临床真菌病的研究中,从而为控制白念感染及为早期诊断、治疗提供基础。本文综述了限制性片段长度多态性、随机扩增多态性DNA分析、ITS区域序列分析等分子生物学技术在白念珠菌基因分型方面的相关研究,比较了它们的优缺点,并且讨论了将基因分型研究应用于临床诊断、治疗及开发新型抗真菌药物的发展趋势和广阔前景。认为目前更倾向于多种分型方法联合应用,并借助计算机软件进行分析,但是仍需进一步探索。  相似文献   

20.
Despite the ubiquitous nature of Spearman's g in mental test performance, the charge «intelligence is what intelligence tests test» has not been countered in a satisfactory way. It is proposed that there are two ways to answer this complaint. The first concerns the new hypothesis testing models in factor analysis. The second involves studying the ‘biology of intelligence’. The biology of intelligence has various meanings and four are discussed: biology as theory; biology as race and genetics; biology as neurobiology; and biology as basic psychological processes. The last of these is considered in some detail and it is found that reaction time, evoked potentials and inspection time offer bright prospects for further research on the biology of psychometric intelligence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号