首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal intelligence as encephalization   总被引:1,自引:0,他引:1  
There is no consensus on the nature of animal intelligence despite a century of research, though recent work on cognitive capacities of dolphins and great apes seems to be on one right track. The most precise quantitative analyses have been of relative brain size, or structural encephalization, undertaken to find biological correlates of mind in animals. Encephalization and its evolution are remarkably orderly, and if the idea of intelligence were unknown it would have to be invented to explain encephalization. The scientific question is: what behaviour or dimensions of behaviour evolved when encephalization evolved? The answer: the relatively unusual behaviours that require increased neural information processing capacity, beyond that attributable to differences among species in body size. In this perspective, the different behaviours that depend on augmented processing capacity in different species are evidence of different intelligences (in the plural) that have evolved.  相似文献   

2.
We test the hypothesis that polymorphisms of the brain regulator genes MCPH1 and ASPM contribute to variations in human brain size and its correlates. We measured general mental ability, head circumference and social intelligence in 644 Canadian adults (496 Caucasians, 36 Orientals, 84 Mixed Race/Other and 28 Blacks; 257 men and 387 women). The gene polymorphisms were assessed from buccal DNA; mental ability by Wonderlic Personnel Test and Multidimensional Aptitude Battery; head circumference by stretchless tape; and social intelligence by prosocial attitude questionnaires. Although all measures were construct valid and the allele frequencies showed expected population differences, no relationship was found between the genes and any of the criteria. Among Caucasian 18-25 year olds, for example, the two mental ability tests correlated with each other (r=0.78, N=476, p<0.001), with head circumference (r=0.17, N=182, p<0.05) and with prosocial attitudes (r=0.23, N=182, p<0.001).  相似文献   

3.
Previous studies have implicated several brain areas as subserving numerical approximation. Most studies have examined brain correlates of adult numerical approximation and have not considered individual differences in mathematical ability. The present study examined non-symbolic numerical approximation in two groups of 10-year-olds: Children with low and high mathematical ability. The aims of this study were to investigate the brain mechanisms associated with approximate numerosity in children and to assess whether individual differences in mathematical ability are associated with differential brain correlates during the approximation task. The results suggest that, similarly to adults, multiple and distributed brain areas are involved in approximation in children. Despite equal behavioral performance, there were differences in the brain activation patterns between low and high mathematical ability groups during the approximation task. This suggests that individual differences in mathematical ability are reflected in differential brain response during approximation.  相似文献   

4.
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.  相似文献   

5.
Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing.  相似文献   

6.
The following paper develops a sexual selection model for the evolution of bipedal locomotion, canine reduction, brain enlargement, language and higher intelligence. The model involves an expansion of Darwin’s ideas about human evolution based on recent elaborations of sexual selection theory. Modern notions about intrasexual competition and female and male choice and their ecological correlates are summarized along with a new model for the role of sexual selection in speciation. Rapid evolution of bipedal locomotion as a male adaptation for nuptial feeding of females is proposed as a model for ape-hominid divergence through sexual selection; canine reduction is attributed to selection for associated epigamic displays. The analogy with male specialization through sexual selection speciation in hamadryas baboons is noted. Subsequent changes in female reproductive physiology are attributed to female competition for increased male parental investment during the time of early Homo andHomo erectus. The origin of higher intellectual and language abilities inHomo sapiens is attributed to male competition through technology and rule production to control resources and females; intellectual abilities involved in social manipulation are attributed to female competition for male parental investment and maintenance of polyandry. The course of hominid evolution is characterized as involving a trend from a promiscuous mating system toward increasing intensity of adaptations for male control of females, and by increasing intensity of female adaptation to maintain male parental investment while circumventing male control.  相似文献   

7.
杨泽艳  吴素凤  蒋淑珍 《生物磁学》2011,(17):3342-3345
目的:探讨早期联合干预对脑损伤早产儿智能及运动发育的影响。方法:80例存在脑损伤的早产儿随机分为干预组与对照组,每组各40例,对照组给予常规治疗与保健指导,干预组在此基础上联合神经节苷脂治疗与早期康复训练,定期随访两年,观察比较患儿纠正胎龄40周时神经行为评分(NBNA),智力及运动发育情况。结果:干预组患儿纠正胎龄40周NBNA评分为33.04±1.12.对照组NBNA评分为30.95±0.88,两组间差异有统计学意义(P〈0.05);干预组MDI与PDI指数分别于9月龄始和6月龄始显著高于对照组(P〈0.01或0.05);1岁时进行Gesell智力发育检查,干预组大运动、精细动作、适应性、语言、个人一社会交往等五个能区情况均明显好于对照组(P〈0.01);干预组17.5%的后遗症发生率显著低于对照组32.5%的发生率(P〈0.01)。结论:联合旱期干预治疗可有效促进脑损伤早产儿神经系统功能修复,改善智能及运动发育,减少后遗症发生。  相似文献   

8.
p-Chloroamphetamine (PCA) is a useful pharmacologic tool for selectively increasing brain serotonin function acutely by release of serotonin into the synaptic cleft. PCA produces behavioral, neurochemical and neuroendocrine effects believed due to serotonin release after doses in the range of 0.5–5 mg/kg. At higher doses and at longer times, PCA causes depletion of brain serotonin. The mechanisms of this depletion are not well understood but require the serotonin uptake carrier. Antagonism of PCA-induced depletion of brain serotonin is a useful means of assessing the ability of a compound to block the serotonin uptake carrier on brain serotonin neurons. PCA can also be used as a neurotoxic agent to deplete brain serotonin in functional studies, apparently by destroying some serotonergic nerve terminals. Used in this way, PCA has an advantage over 5,6- and 5,7-dihydroxytryptamines in being effective by systemic injection, and it affects brain serotonergic projections with a different neuroanatomic specificity than the dihydroxytryptamines.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

9.
In 1985, Kummer & Goodall pleaded for an ecology of intelligence and proposed that innovations might be a good way to measure cognition in the wild. Counts of innovation per taxonomic group are now available in hundreds of avian and primate species, as are counts of tactical deception, tool use and social learning. Robust evidence suggests that innovation rate and its neural correlates allow birds and mammals to cope better with environmental change. The positive correlations between taxonomic counts, and the increasing number of cognitive and neural measures found to be associated with ecological variables, suggest that domain general processes might be more pervasive than previously thought in the evolution of intelligence.  相似文献   

10.
作者对采自长江的三头白鱀豚(Lipotes vexillifer Miller)的脑进行了解剖研究。白鱀豚的脑表现出典型的鲸脑特征。与海洋齿鲸类比较,淡水鲸科的种类普遍呈现出视觉系统的退化,这是一种生态适应的结果。从神经解剖学的观点看来,白鱀豚与亚马逊河海豚(Inia)、拉普拉塔河海豚(Pontoporia)的脑的结构是近似的,而与恒河海豚(Platanista)显著不同,这与骨骼形态上表现出的系统发育关系是一致的。    相似文献   

11.
12.
Altered functional neuroanatomy of high-order cognitive processing has been described in very preterm individuals (born before 33 weeks of gestation; VPT) compared to controls in childhood and adolescence. However, VPT birth may be accompanied by different types of adverse neonatal events and associated brain injury, the severity of which may have differential effects on brain development and subsequent neurodevelopmental outcome. We conducted a functional magnetic resonance imaging (fMRI) study to investigate how differing degrees of neonatal brain injury, detected by neonatal ultrasounds, affect the functional neuroanatomy of memory processing in VPT young adults. We used a verbal paired associates learning task, consisting of four encoding, four cued-recall and four baseline condition blocks. To further investigate whether differences in neural activation between the groups were modulated by structural brain changes, structural MRI data were also collected. We studied 12 VPT young adults with a history of periventricular haemorrhage with associated ventricular dilatation, 17 VPT individuals with a history of uncomplicated periventricular haemorrhage, 12 individuals with normal ultrasonographic findings, and 17 controls. Results of a linear trend analysis demonstrated that during completion of the paired associates learning task right frontal and right parietal brain activation decreased as the severity of neonatal brain injury increased. There were no statistically significant between-group differences in on-line task performance and participants' intelligence quotient (IQ) at assessment. This pattern of differential activation across the groups was observed particularly in the right middle frontal gyrus during encoding and in the right posterior cingulate gyrus during recall. Structural MRI data analysis revealed that grey matter volume in the right superior temporal gyrus, right cerebellum, left middle temporal gyrus, right globus pallidus and right medial frontal gyrus decreased with increasing severity of neonatal brain injury. However, the significant between-group functional neuroanatomical differences were not directly attributable to the detected structural regional differences.  相似文献   

13.
The neural efficiency hypothesis postulates an inverse relationship between intelligence and brain activation. Previous research suggests that gender and task modality represent two important moderators of the neural efficiency phenomenon. Since most of the existing studies on neural efficiency have used ERD in the EEG as a measure of brain activation, the central aim of this study was a more detailed analysis of this phenomenon by means of functional MRI. A sample of 20 males and 20 females, who had been screened for their visuo-spatial intelligence, was confronted with a mental rotation task employing an event-related approach. Results suggest that less intelligent individuals show a stronger deactivation of parts of the default mode network, as compared to more intelligent people. Furthermore, we found evidence of an interaction between task difficulty, intelligence and gender, indicating that more intelligent females show an increase in brain activation with an increase in task difficulty. These findings may contribute to a better understanding of the neural efficiency hypothesis, and possibly also of gender differences in the visuo-spatial domain.  相似文献   

14.
Although the hamster is frequently used as an experimental animal for studying reproductive neuroendocrinology and sex behavior, estrogen receptors (ER) in the central nervous system have not been fully characterized. Using Sephadex LH-20 gel filtration and DNA-cellulose affinity chromatography, estrogen binding macromolecules having the physicochemical properties of classical ER were identified in cytosolic and nuclear extracts of brain tissues. These receptors exhibited high affinity for estradiol (Kd = 10(-9) M), limited capacity (30-50 fmol/g tissue), and estrogen specificity; however, competition studies indicate that brain and uterine ER have different binding kinetics. The neuroanatomic distribution of ER was similar in males and females with highest levels in the limbic brain and consistently low levels in remaining forebrain and mid/hindbrain. No sex differences in receptor number or other binding parameters were evident. Sucrose gradient centrifugation showed that cytosolic ER sedimented in the 7-8S region of a 5-20% linear gradient (no salt), whereas nuclear ER had a sedimentation coefficient of 5S under high ionic strength. On DNA-cellulose affinity columns, these receptors had an elution maximum of 0.18 M NaCl. After a single injection of estradiol, nuclear ER increased and cytosolic ER were depleted. The lower estradiol binding affinity and receptor levels in hamster brain as compared to the rat are consistent with observed species differences in neural sensitivity to estrogen. We expect these data in hamsters, a markedly photosensitive species, to provide a basis for future studies examining the role of receptors in mediating the effects of day-length on steroid dependent feedback and behavioral responses.  相似文献   

15.
R. Lynn 《Human Evolution》1990,5(3):241-244
The brain size of hominids has increased approximately threefold during the evolution of the hominids fromAustralopithecus toHomo sapiens. It is proposed that the principal reason for this increase is that larger brains conferred greater intelligence, and greater intelligence conferred a selection advantage. A number of anthropologists have difficulty accepting this thesis because they believe that brain size is not associated with intelligence in man. Evidence is reviewed, and new evidence from two studies is presented, to show that brain size as measured by head size is positively correlated with intelligence as measured by intelligence tests. On two recent samples statistically significant correlations of .21 and .30 were obtained between estimates of brain size and IQ. It is considered that brain size is positively associated with intelligence in man and that this is the major reason for the increase in brain size of the hominids during the last 3.2 million years.  相似文献   

16.
Zimmer U  Macaluso E 《Neuron》2005,47(6):893-905
Our brain continuously receives complex combinations of sounds originating from different sources and relating to different events in the external world. Timing differences between the two ears can be used to localize sounds in space, but only when the inputs to the two ears have similar spectrotemporal profiles (high binaural coherence). We used fMRI to investigate any modulation of auditory responses by binaural coherence. We assessed how processing of these cues depends on whether spatial information is task relevant and whether brain activity correlates with subjects' localization performance. We found that activity in Heschl's gyrus increased with increasing coherence, irrespective of whether localization was task relevant. Posterior auditory regions also showed increased activity for high coherence, primarily when sound localization was required and subjects successfully localized sounds. We conclude that binaural coherence cues are processed throughout the auditory cortex and that these cues are used in posterior regions for successful auditory localization.  相似文献   

17.
Features of brain interhemispheric asymmetry during solving the spatial figurative task (maze model) were studied in men and women with different intelligence quotients (IQ). It was shown that during task solving the rate of information processing was higher in the right brain hemisphere, and amplitude characteristics of the event-related potentials were higher in the left hemisphere. No gender and IQ differences in the character of interhemispheric interaction were found during the realization of the maze-model task. The results testify that the character of hemispheric interaction depends om the task rype rather than gender and intelligence level.  相似文献   

18.
Relative brain size and ecology in birds   总被引:2,自引:0,他引:2  
We test the hypothesis that the relative sizes of the different parts of the brain (brain stem, optic lobes, cerebellum and cerebral hemispheres), measured after body size effects have been removed, are associated with differences in behaviour and ecology across bird species.
The results demonstrate that behavioural and ecological correlates of relative brain size are not independent of each other. When the effects of variation in other categories are accounted for, the strongest single effect is due to relatively large brain sizes being associated with altricial development. It is unlikely that this effect is due to the confounding influence of taxonomic associations.
Overall, the results do not provide support for the idea that differences in measures of environmental complexity select for differences in relative brain size.  相似文献   

19.
《Cryobiology》2016,72(3):448-458
We describe here a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC), which demonstrates the relevance and utility of advanced cryopreservation science for the neurobiological research community. ASC is a new brain-banking technique designed to facilitate neuroanatomic research such as connectomics research, and has the unique ability to combine stable long term ice-free sample storage with excellent anatomical resolution. To demonstrate the feasibility of ASC, we perfuse-fixed rabbit and pig brains with a glutaraldehyde-based fixative, then slowly perfused increasing concentrations of ethylene glycol over several hours in a manner similar to techniques used for whole organ cryopreservation. Once 65% w/v ethylene glycol was reached, we vitrified brains at −135 °C for indefinite long-term storage. Vitrified brains were rewarmed and the cryoprotectant removed either by perfusion or gradual diffusion from brain slices. We evaluated ASC-processed brains by electron microscopy of multiple regions across the whole brain and by Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) imaging of selected brain volumes. Preservation was uniformly excellent: processes were easily traceable and synapses were crisp in both species. Aldehyde-stabilized cryopreservation has many advantages over other brain-banking techniques: chemicals are delivered via perfusion, which enables easy scaling to brains of any size; vitrification ensures that the ultrastructure of the brain will not degrade even over very long storage times; and the cryoprotectant can be removed, yielding a perfusable aldehyde-preserved brain which is suitable for a wide variety of brain assays.  相似文献   

20.
2The ganglioside compositions of the chick optic tectum and aggregating tectal cell cultures were examined. Both showed similar trends in changes in ganglioside patterns during development. GD3 and GD1b were the predominant gangliosides early in development, while GD1a and several other multisialogangliosides increased in relative amounts with increasing age in vivo and in vitro. Four gangliosides were present early in development which have not previously been reported. These gangliosides are not present at later developmental times suggesting a possible role for them during the critical early stages of nervous tissue differentiation. Some differences were noted when comparing in vivo versus in vitro ganglioside patterns; these differences may possibly be due to the lack of normal retinotectal connections in the cultures. Cytochemical studies on the localization of the presumed cholera toxin--peroxidase binding site GM1 showed conjugate binding correlates with increasing levels of GM1 in the cultures. In older cultures, the conjugate was uniformly localized on all cells and processes in the aggregates. The conjugate also bound to synaptic membranes and intensely stained the synaptic cleft. This latter observation suggests an enrichment of GM1 in the synaptic cleft region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号