首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamarix ramosissima and Tamarix chinensis are invasive weed species in western North America. Previous studies based on single locus DNA sequence data revealed some information about the invasion process, but multilocus markers can provide additional information about levels of introgression and genotype origins. We have developed primers that amplify 10 polymorphic microsatellite loci from T. ramosissima; these primer pairs also successfully amplify polymorphic microsatellites from the closely related T. chinensis, a species that forms hybrids with T. ramosissima in the western USA.  相似文献   

2.
Genetic diversity in pathogen species contains information about evolutionary and epidemiological processes, including the origins and history of disease, the nature of the selective forces acting on pathogen genes and the role of recombination in generating genetic novelty. Here, we review recent developments in these fields and compare the use of population genetic, or population-model based, approaches to phylogenetic, or population-model free, methodologies. We show how simple epidemiological models can be related to the ancestral, or coalescent, process underlying samples from pathogen species, enabling detailed inference about pathogen biology from patterns of molecular variation.  相似文献   

3.
Small circular plasmids containing replication origins and, in some cases, centromeres, can replicate autonomously in the nuclei of all tested yeast species. Because this autonomous replication is dependent on the replication origin within the plasmid, measurements of the efficiency of autonomous replication (by the methods summarized here) permit evaluation of the effects of mutations on origin function. Although alternative methods are available for genetic characterization of replication origins in other organisms, the simplicity of the autonomous replication assay in yeasts has permitted development of the deepest understanding to date of eukaryotic replication origin structure. This information has come primarily from studies with Saccharomyces cerevisiae. However, there are many other yeast species, each with its own variety of replication origins. Use of the methods summarized here to characterize origins in other yeast species is likely to provide additional insights into eukaryotic replication origin structure.  相似文献   

4.
Cote J  Clobert J 《Ecology letters》2007,10(5):411-417
‘Should I stay or should I go?’ is a fundamental question facing any candidate for emigration, as emigrating without outside information has major costs. Most studies on this topic have concentrated on risk‐reducing strategies (e.g. exploration) developed after leaving the natal habitat. The idea that information might be acquired before leaving has not been investigated. Immigrants carrying information about their origins could provide such information to potential emigrants in their initial habitat. We manipulated the density of common lizard (Lacerta vivipara) populations, to investigate whether immigrants originating from these populations transmitted such information to the population they joined. Emigration of the residents of this new population clearly depended on the origin of the immigrant. Immigrants are therefore a source of information, in this case about surrounding population densities, and may have a major effect on dispersal and species persistence in a fragmented habitat.  相似文献   

5.
《Fly》2013,7(3):155-163
Abstract Increased size of eukaryotic genomes necessitated the use of multiple origins of DNA replication, and presumably selected for their efficient spacing to ensure rapid DNA replication. The sequence of these origins remains undetermined in metazoan genomes, leaving important questions about the selective constraints acting on replication origins unanswered. We have chosen to study the evolution of proteins that recognize and define these origins every cell cycle, as a surrogate to the direct analysis of replication origins. Among these DNA replication proteins is the essential Cdc6 protein, which acts to license origins for replication. We find that two different species pairs of Drosophila show evidence of positive selection in Cdc6 in their highly conserved C-terminal AAA-ATPase domain. We also identified amino acid segments that are highly conserved in the N-terminal tail of Cdc6 proteins from various Drosophila species, but are not conserved even in closely related insect species. Instead, we find that the N-terminal tails of Cdc6 proteins vary extensively in size and sequence across different eukaryotic lineages. Our results suggest that choice of origin firing may be significantly altered in closely related species, as each set of replication proteins optimizes to its own genomic landscape.  相似文献   

6.
Wiggins BL  Malik HS 《Fly》2007,1(3):155-163
Increased size of eukaryotic genomes necessitated the use of multiple origins of DNA replication, and presumably selected for their efficient spacing to ensure rapid DNA replication. The sequence of these origins remains undetermined in metazoan genomes, leaving important questions about the selective constraints acting on replication origins unanswered. We have chosen to study the evolution of proteins that recognize and define these origins every cell cycle, as a surrogate to the direct analysis of replication origins. Among these DNA replication proteins is the essential Cdc6 protein, which acts to license origins for replication. We find that two different species pairs of Drosophila show evidence of positive selection in Cdc6 in their highly conserved C-terminal AAA-ATPase domain. We also identified amino acid segments that are highly conserved in the N-terminal tail of Cdc6 proteins from various Drosophila species, but are not conserved even in closely related insect species. Instead, we find that the N-terminal tails of Cdc6 proteins vary extensively in size and sequence across different eukaryotic lineages. Our results suggest that choice of origin firing may be significantly altered in closely related species, as each set of replication proteins optimizes to its own genomic landscape.  相似文献   

7.
The Z-curve is a three-dimensional curve that constitutes a unique representation of a DNA sequence, i.e., both the Z-curve and the given DNA sequence can be uniquely reconstructed from the other. We employed Z-curve analysis to identify one replication origin in the Methanocaldococcus jannaschii genome, two replication origins in the Halobacterium species NRC-1 genome and one replication origin in the Methanosarcina mazei genome. One of the predicted replication origins of Halobacterium species NRC-1 is the same as a replication origin later identified by in vivo experiments. The Z-curve analysis of the Sulfolobus solfataricus P2 genome suggested the existence of three replication origins, which is also consistent with later experimental results. This review aims to summarize applications of the Z-curve in identifying replication origins of archaeal genomes, and to provide clues about the locations of as yet unidentified replication origins of the Aeropyrum pernix K1, Methanococcus maripaludis S2, Picrophilus torridus DSM 9790 and Pyrobaculum aerophilum str. IM2 genomes.  相似文献   

8.
Factors contributing to non-randomness in species Co-occurrences on Islands   总被引:4,自引:1,他引:3  
Summary There has been dispute whether patterns of species co-occurrence on islands are largely random. We present a new method for testing this question; this method lets one not only examine whether a whole fauna is non-randomly structured, but also identify in which direction and by how much each particular species combination deviates from expectations based on randomness. Application of this method to the whole Bismarck and New Hebridean avifaunas, and to two particular guilds, shows that some pairs of species have more exclusive distributions than expected for random placement of species, because of competition, differing distributional strategies, or different geographical orgins. Other pairs of species have more coincident distributions than expected, because of shared habitat, single-island endemism, shared distributional strategies, or shared geographical origins. Much of the information about non-random co-occurrence is contained in the incidence graphs for occurrence of individual species. Finally, our present understanding of assembly rules is summarized.  相似文献   

9.
Pine seedling shoots undergo sharp heteroblastic changes during the early ontogenetic stages. The rate of these changes has been seen to vary between species and provenances within species, but there is a marked lack of information about its genetic control at the lower hierarchical levels. We used clonal replicates of maritime pine to determine broad-sense heritability of shoot ontogenetic heteroblasty and its correlation to rooting ability. We applied a simple ontogenetic index based on the proportion of basal nodes with secondary needles in rooted cuttings of 15 clones from 9 environmentally contrasting origins. We found a high clonal heritability for shoot ontogenetic index and a moderately high heritability for rooting ability, but both genetic and phenotypic correlations between these two traits were weak and non-significant. These results indicate that both developmental phenomena are genetically controlled, but not strictly associated in this species.  相似文献   

10.
The spectacular diversity of the Cape flora has promoted wide speculation on the evolutionary processes behind its origins, but until recently these ideas could not be tested rigorously due to the almost complete absence of a fossil record for the region. Now, molecular phylogenetic approaches, combined with analyses of ecological and biogeographical information, offer the potential to test key hypotheses about speciation of so-called Cape clades of flowering plants. We outline the main theories and how they might be tested by phylogenetic approaches. One conclusion is that population level studies of particular species complexes are now needed to complement the growing volume of phylogenetic information for Cape clades and to provide better understanding of mechanisms of population divergence in the Cape. Another is that comparisons between Cape and non-Cape clades are needed to confirm whether speciation is indeed faster in the Cape region. An alternative possibility, that extinction rates are lower, should also be considered in these comparisons. By virtue of the ongoing, coordinated efforts by a global team of botanists, the Cape is now uniquely placed for exploring the origins and assembly of a regional assemblage or biome.  相似文献   

11.
We examined the origins of cultivated stocks of the endangered species Primula sieboldii at the individual plant level by using an assignment test based on eight microsatellite loci and regional features of chloroplast DNA (cpDNA) variation of wild populations. To confirm that we had sufficient information for estimating the origins of the stocks, we performed an assignment test with 920 genets that we collected from 32 wild populations with known origins. The test assigned 99.6% of the genets to the population from which they had been sampled, confirming the suitability of the method. We then performed the assignment test with 29 cultivated stocks. The alleged origins of 19 were confirmed by microsatellite and cpDNA variations. In contrast, the alleged origins of five were rejected by both markers. Five stocks, which do not have a reference population located within 30 km of their reputed origin, were not assigned to any population. Stocks whose alleged origins were rejected are inappropriate as restoration materials, because their introduction might disturb local gene pools. Six stock haplotypes could not be detected in wild populations. This may suggest the loss of genetic diversity in the wild and the value of stocks as a gene bank. The genetic method used in this study will also be helpful to detect cryptic invasion by nonendemic genotypes or to trace the origins of plants collected for commercial purposes, a threat to many endangered species.  相似文献   

12.
In recent years, we have witnessed an international debate about the question of the origins of art. On the one hand, some specialists have suggested that art appeared for the first time at the beginning of the Upper Paleolithic associated to the emergence of Homo sapiens sapiens. From this point of view, Paleolithic art as well as other hallmarks of behavioral modernity were exclusive to anatomically modern humans. On the other hand, some scholars have put into question the traditional paradigm concerning the origins of art and have suggested that artistic objects arose over a long period of time among different species, including Neanderthals. In order to contextualize this debate, we analyze in this article the history of the different interpretations and controversies concerning the question of the origins of art. Taking as reference the French case, we examine the connections between the different theories about art's origins suggested by Pleistocene art specialists during the last century and the dominant paradigms in human paleontology during the same period. Informed by one another, the question of the origins of art and that of human evolution seems to be inextricable linked.  相似文献   

13.
Biomineralization has mostly been studied in the class Anthozoa (Phylum Cnidaria), but very little is known about the evolution of the calcified skeleton in the class Hydrozoa or about the processes leading to its formation. The evolution of the calcified skeleton is here investigated in the hydrozoan family Hydractiniidae. A phylogenetic analysis of ribosomal, mitochondrial, and nuclear-protein-coding DNA sequences supported two independent origins of the calcified skeleton within the Hydractiniidae and indicates a case of parallel evolution, as suspected in the Anthozoa. Neither of the two origins of skeleton in the Hydractiniidae has led to either speciose or numerically abundant species, in contrast with other skeletonized hydrozoan families. Finally, we show that the origin of calcified skeletons in the Hydractiniidae is significantly correlated with the distribution of species with calcium carbonate granules within a polyp's gastrodermal cells. This suggests that the presence of these granules precedes the origin of a full skeleton.  相似文献   

14.
Abstract Why does a trait evolve repeatedly within a clade? When examining the evolution of a trait, evolutionary biologists typically focus on the selective advantages it may confer and the genetic and developmental mechanisms that allow it to vary. Although these factors may be necessary to explain why a trait evolves in a particular instance, they may not be sufficient to explain phylogenetic patterns of repeated evolution or conservatism. Instead, other factors may also be important, such as biogeography and competitive interactions. In squamate reptiles (lizards and snakes) a dramatic transition in body form has occurred repeatedly, from a fully limbed, lizardlike body form to a limbreduced, elongate, snakelike body form. We analyze this trait in a phylogenetic and biogeographic context to address why this transition occurred so frequently. We included 261 species for which morphometric data and molecular phylogenetic information were available. Among the included species, snakelike body form has evolved about 25 times. Most lineages of snakelike squamates belong to one of two ecomorphs, either short‐tailed burrowers or long‐tailed surface dwellers. The repeated origins of snakelike squamates appear to be associated with the in situ evolution of these two ecomorphs on different continental regions (including multiple origins of the burrowing morph within most continents), with very little dispersal of most limb‐reduced lineages between continental regions. Overall, the number of repeated origins of snakelike morphology seems to depend on large‐scale biogeographic patterns and community ecology, in addition to more traditional explanations (e.g., selection, development).  相似文献   

15.
Jacek Tomczyk 《Human Evolution》2006,21(3-4):203-213
The origins of Homo sapiens is a central issue of modern paleoanthropology. The available fossil material serves as a basis for postulating different hypotheses and models, but as is widely appreciated, anthropologists have yet to reach a consensus about human origins. It seems possible that the main reasons behind such an irreducible divergence of opinions are different methodological approaches rather than the analyses of fossil material. Some scientists would say that it is the fragmentary nature of fossil material which accounts for the debates about the origins of H. sapiens. Had the debate been only a matter of the empirical considerations many disagreements concerning H. sapiens would have probably disappeared long ago. But since the controversies are imbued in methodological reality the closure of the debate is not to be expected soon. There are three research methods: morphological, archaeological and genetic. Each approach has a specific definition of H. sapiens at its disposal, which largely accounts for the different scenarios for the origin of our species. Any debate concerning this problem must therefore begin with a discussion about the research methods. The controversy about our origins thus appears to be of secondary importance. The present paper aims at presenting the methodological controversy in relation to the origins of H. sapiens. The discussion about the genealogy of H. sapiens certainly is in urgent need of a new, more integrated way of approaching the past.  相似文献   

16.
The use of DNA sequence data in systematic studies has brought about a revolution in our understanding of avian relationships and when combined with digitized distributional data, has facilitated new interpretations about the origins of diverse clades of the African avifauna including its diversification up through the Tertiary until the present. Here we review recent studies with special reference to Africa's forest avifauna and specifically comment on the putative origins of 'hotspots' of endemism in the Eastern Arc Mountains of Tanzania and in the Cape Region of South Africa. Intriguingly, both these areas appear to have retained populations of relict taxa since the mid-tertiary thermal optimum and at the same time have been centres of recent species differentiation.  相似文献   

17.
Deciphering species relationships and hybrid origins in polyploid agamic species complexes is notoriously difficult. In this study of cheilanthoid ferns, we demonstrate increased resolving power for clarifying the origins of polyploid lineages by integrating evidence from a diverse selection of biosystematic methods. The prevalence of polyploidy, hybridization, and apomixis in ferns suggests that these processes play a significant role in their evolution and diversification. Using a combination of systematic approaches, we investigated the origins of apomictic polyploids belonging to the Cheilanthes yavapensis complex. Spore studies allowed us to assess ploidy levels; plastid and nuclear DNA sequencing revealed evolutionary relationships and confirmed the putative progenitors (both maternal and paternal) of taxa of hybrid origin; enzyme electrophoretic evidence provided information on genome dosage in allopolyploids. We find here that the widespread apomictic triploid, Cheilanthes lindheimeri, is an autopolyploid derived from a rare, previously undetected sexual diploid. The apomictic triploid Cheilanthes wootonii is shown to be an interspecific hybrid between C. fendleri and C. lindheimeri, whereas the apomictic tetraploid C. yavapensis is comprised of two cryptic and geographically distinct lineages. We show that earlier morphology-based hypotheses of species relationships, while not altogether incorrect, only partially explain the complicated evolutionary history of these ferns.  相似文献   

18.
Polyploidy has been ubiquitous in plant evolution and is thought to be an important engine of biodiversity that facilitates speciation, adaptation, and range expansion. Polyploid species can exhibit higher ecological tolerance than their progenitor species. For allotetraploid species, this higher tolerance is often attributed to the existence of heterosis resulting from entire genome duplication. However, multiple origins of allopolyploid species may further promote their ecological success by providing genetic variability in ecological traits underlying local adaptation and range expansion. Here we show in a group of allopolyploid species in the genus Aegilops that range size and abundance are correlated with the number of inferred origins. We found that allopolyploid Aegilops spp. contain multiple chloroplast haplotypes, each identical to haplotypes of the diploid progenitor species, indicating multiple origins as the major source of variation. The number of inferred origins in each allopolyploid species was correlated to the total area occupied by the allopolyploid and the tendency for the species to be common. Additionally, we found differences in ecological tolerance among independent origins in Aegilops triuncialis. These results strongly support the hypothesis that the introduction of genetic variability by multiple origins can increase the ecological amplitude and evolutionary success of allopolyploid species.  相似文献   

19.
The species Homo heidelbergensis is central to many discussions about recent human evolution. For some workers, it was the last common ancestor for the subsequent species Homo sapiens and Homo neanderthalensis; others regard it as only a European form, giving rise to the Neanderthals. Following the impact of recent genomic studies indicating hybridization between modern humans and both Neanderthals and "Denisovans", the status of these as separate taxa is now under discussion. Accordingly, clarifying the status of Homo heidelbergensis is fundamental to the debate about modern human origins.  相似文献   

20.
Evolutionary responses are required for tree populations to be able to track climate change. Results of 250 years of common garden experiments show that most forest trees have evolved local adaptation, as evidenced by the adaptive differentiation of populations in quantitative traits, reflecting environmental conditions of population origins. On the basis of the patterns of quantitative variation for 19 adaptation‐related traits studied in 59 tree species (mostly temperate and boreal species from the Northern hemisphere), we found that genetic differentiation between populations and clinal variation along environmental gradients were very common (respectively, 90% and 78% of cases). Thus, responding to climate change will likely require that the quantitative traits of populations again match their environments. We examine what kind of information is needed for evaluating the potential to respond, and what information is already available. We review the genetic models related to selection responses, and what is known currently about the genetic basis of the traits. We address special problems to be found at the range margins, and highlight the need for more modeling to understand specific issues at southern and northern margins. We need new common garden experiments for less known species. For extensively studied species, new experiments are needed outside the current ranges. Improving genomic information will allow better prediction of responses. Competitive and other interactions within species and interactions between species deserve more consideration. Despite the long generation times, the strong background in quantitative genetics and growing genomic resources make forest trees useful species for climate change research. The greatest adaptive response is expected when populations are large, have high genetic variability, selection is strong, and there is ecological opportunity for establishment of better adapted genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号