首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.  相似文献   

2.
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8α and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.  相似文献   

3.
In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.  相似文献   

4.
Homotypic membrane tethering by the Golgi reassembly and stacking proteins (GRASPs) is required for the lateral linkage of mammalian Golgi ministacks into a ribbon-like membrane network. Although GRASP65 and GRASP55 are specifically localized to cis and medial/trans cisternae, respectively, it is unknown whether each GRASP mediates cisternae-specific tethering and whether such specificity is necessary for Golgi compartmentalization. Here each GRASP was tagged with KillerRed (KR), expressed in HeLa cells, and inhibited by 1-min exposure to light. Significantly, inactivation of either GRASP unlinked the Golgi ribbon, and the immediate effect of GRASP65-KR inactivation was a loss of cis- rather than trans-Golgi integrity, whereas inactivation of GRASP55-KR first affected the trans- and not the cis-Golgi. Thus each GRASP appears to play a direct and cisternae-specific role in linking ministacks into a continuous membrane network. To test the consequence of loss of cisternae-specific tethering, we generated Golgi membranes with a single GRASP on all cisternae. Remarkably, the membranes exhibited the full connectivity of wild-type Golgi ribbons but were decompartmentalized and defective in glycan processing. Thus the GRASP isoforms specifically link analogous cisternae to ensure Golgi compartmentalization and proper processing.  相似文献   

5.
The mammalian Golgi complex is comprised of a ribbon of stacked cisternal membranes often located in the pericentriolar region of the cell. Here, we report that during apoptosis the Golgi ribbon is fragmented into dispersed clusters of tubulo-vesicular membranes. We have found that fragmentation is caspase dependent and identified GRASP65 (Golgi reassembly and stacking protein of 65 kD) as a novel caspase substrate. GRASP65 is cleaved specifically by caspase-3 at conserved sites in its membrane distal COOH terminus at an early stage of the execution phase. Expression of a caspase-resistant form of GRASP65 partially preserved cisternal stacking and inhibited breakdown of the Golgi ribbon in apoptotic cells. Our results suggest that GRASP65 is an important structural component required for maintenance of Golgi apparatus integrity.  相似文献   

6.
Cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon. Two proteins, GRASP65 and GRASP55, previously implicated in stacking of cisternae, are shown to be required for the formation of the Golgi ribbon.

IntroductionThe Golgi apparatus is an intermediate organelle along the secretory pathway that receives proteins and lipids (“cargo”) from the endoplasmic reticulum, covalently modifies them, and then exports them via transport vesicles for trafficking to the plasma membrane or other organelles. In most eukaryotic cells, disc-shaped membrane cisternae, each containing a distinct repertoire of cargo-processing enzymes, are stacked one on top of another to form the “Golgi stack,” a visual hallmark of the organelle (Fig. 1). The cisternae of the Golgi stack are polarized, with the compartment receiving endoplasmic reticulum–derived cargo termed the cis cisterna followed by the medial; trans; and finally, the trans-Golgi network. The physiological advantages conferred by stacking of Golgi cisternae are unclear, but it is thought to enhance the efficiencies of the sequential chemical modifications of glycoproteins and glycolipids during secretion. Cultured mammalian cells may possess more than 100 Golgi stacks, which are aligned side by side about the centrosome to form the “Golgi ribbon” (Fig. 1). Vesicles and tubules span the intervening, “noncompact” zones between stacks of cisternae, connecting analogous cisternae across the ribbon and thereby ensuring a homogeneous distribution of Golgi resident proteins among all cisternae. During mitosis, the Golgi ribbon is unlinked, the stacks are disassembled, and the cisternae are converted to vesicles and tubules; after cytokinesis, the process is reversed, and the Golgi is rebuilt. The dynamic nature of Golgi structure in interphase and mitotic cells implies the existence of a reversible mechanism that tethers Golgi cisternae to each other to form the stack and a mechanism that aligns and links the stacks into the ribbon.Open in a separate windowFigure 1.The organization of the Golgi apparatus in vertebrate cells. Individual stacks of Golgi cisternae are aligned side to side to form the Golgi ribbon. The GRASP65 and GRASP55 proteins are depicted to be enriched on the rims of the indicated cisternae within individual stacks of cisternae, where they are required to maintain the arrangement of stacks into the ribbon.GRASP proteins tether Golgi cisternae in vitroInvestigations into the molecular basis of Golgi cisterna stacking have ultimately focused attention on a handful of cytoplasmic proteins called “Golgins” and “GRASPs” that are associated with specific Golgi cisternae and interact with each other. Of particular interest are two related proteins GRASP65 and GRASP55 (respective systematic names GORASP1 and GORASP2), discovered by Warren and colleagues via in vitro reconstitution experiments, as capable of mediating stacking of Golgi cisternae (Barr et al., 1997; Shorter et al., 1999). Whereas GRASP65 localizes to the cis cisterna, GRASP55 localization favors medial/trans Golgi cisternae (Shorter et al., 1999); hence, these proteins could, in principle, tether cisternae to form a minimal Golgi stack. In these in vitro assays, perturbations (mutations, antibody interference) to either GRASP65 or GRASP55 inhibited stacking of reformed Golgi cisternae. Moreover, GRASP proteins are phosphorylated in mitosis just before vesiculation of Golgi cisternae, and preventing phosphorylation impairs the disassembly of the Golgi apparatus and mitotic progression (Wang et al., 2003). These findings underpin models of the Golgi stack where GRASP65 and GRASP55, along with Golgin proteins, constitute the core components of a cytoplasmic “matrix” of proteins that surround the cisternae, mediating their stacking as well as the tethering of transport vesicles to cisternae. Curiously, plant cells contain stacked Golgi cisternae, yet they do not express any GRASP or GRASP-related proteins. And some nonvertebrate organisms with stacked Golgi cisternae express just one GRASP-related protein, while the Golgi cisternae are not stacked in other nonvertebrate organisms (e.g., yeast) that express a single GRASP (Glick and Malhotra, 1998). Apparently, the presence or number of GRASP proteins expressed does not correlate with stacked cisternae.Whereas the results of in vitro biochemical assays underpin our conceptions of GRASP protein function, probing their roles in vivo has proven to be quite challenging. First, depletion/deletion of each individual GRASP protein is largely without effect on Golgi stack or ribbon formation, but a very complex phenotype results from depletion/deletion of both GRASP proteins. Thus, some reports conclude that the GRASP proteins function redundantly to stack cisternae (Bekier et al., 2017), while others conclude that the Golgi ribbon, not the stack per se, is perturbed upon loss of GRASP proteins (Puthenveedu et al., 2006; Feinstein and Linstedt, 2008; Xiang and Wang, 2010; Lee et al., 2014; Veenendaal et al., 2014). Recently, two papers published in the Journal of Cell Biology employed different methodologies to perturb GRASP protein functions in vivo (Grond et al., 2020; Zhang and Seemann, 2021), providing the most conclusive insight to date into the roles of GRASP proteins in Golgi structure.The Golgi ribbon is unlinked upon loss of GRASP proteinsRabouille and colleagues used traditional mouse gene knockout technology to delete GRASP65, finding that such mice are viable with no apparent physiological deficits or gross morphological perturbations of the Golgi (Veenendaal et al., 2014). In their recent study (Grond et al., 2020), GRASP55 was deleted in the GRASP65 null background, but double-knockout mice could not be obtained, consistent with GRASP proteins being at least partially physiologically redundant. Next, using a conditional knockout approach, double GRASP null cells were produced postnatally in the small intestine, and the Golgi of intestinal epithelial cells was examined. In these cells, stacked Golgi cisternae were observed, but their arrangement into a ribbon was compromised, a result corroborated by more detailed analysis of cells in organoid cultures. These findings are at odds with the conclusions of Wang and colleagues (Bekier et al., 2017), who used CRISPR-Cas9 gene editing technology to construct cultured mammalian cell lines that do not express GRASP65 and GRASP55. They found that the appearance of Golgi cisternae was grossly altered, resembling clusters of tubules and vesicles (“tubulovesicular clusters”) about swollen cisterna remnants that debatably appeared to be stacked. One possible reason for the disparities between these two studies is that Bekier et al. (2017) documented that loss of GRASP proteins in cultured mammalian cells also resulted in depletion of a subset of Golgin proteins (e.g., GM130, Golgin-45) from Golgi cisternae, so it was not possible to parse the specific contributions of GRASP proteins to Golgi structure.Analyses of siRNA-depleted and gene-edited cell lines and modified animals are often complicated by incomplete depletion of a query protein, unintended loss of other proteins, or compensatory processes that obscure loss-of-function effects. Notably, siRNA depletion of GM130, which is associated with GRASP65 on the cis cisterna, impairs secretory traffic from the endoplasmic reticulum to the Golgi apparatus, resulting in a reduction in the size of Golgi cisternae and diminished interstack connectivity possibly due to vesiculation of cisternae (Seemann et al., 2000; Puthenveedu et al., 2006). To minimize these drawbacks, Zhang and Seemann (2021) used gene editing to modify the GRASP65 and GRASP55 loci to append an inducible protein degradation domain to each protein in cultured mammalian cells, which was used to elicit degradation of the GRASP proteins within just 2 h. Hence, the acute effects of GRASP protein depletion could be determined before the onset of potentially confounding effects. Fluorescence recovery after photobleaching assays of a fluorescently tagged Golgi resident protein revealed that acute depletion of both GRASP65 and GRASP55 resulted in decreased mobility of the resident Golgi enzyme within the ribbon, indicating that connectivity of cisternae between stacks was compromised. Stacks of Golgi cisternae with proper cis–trans polarity were observed by electron and light microscopy, both shortly (∼2 h) after GRASP protein turnover was initiated, and after mitosis, indicating that GRASP proteins are not required to establish or to maintain the Golgi stacks. Importantly, the authors observed no changes in the levels of GRASP-associated proteins (e.g., GM130) when assayed shortly after initiating GRASP protein turnover, but the amounts of several GRASP-associated proteins were reduced after prolonged growth in the absence of GRASP proteins. The results are in general agreement with experiments by Jarvela and Linstedt (2014), who expressed GRASP65 and GRASP55 fusion proteins appended with “killer RFP” and used chomophore-assisted light inactivation to rapidly (1 min) ablate the proteins in cultured mammalian cells. Similar to Zhang and Seemann (2021), they observed that the Golgi ribbon was disassembled upon inactivation of GRASP proteins, but stacking of cisternae was unaffected. Taken together, these results conclusively show that acute depletion of GRASP65 and GRASP55 impairs lateral linking of stacked Golgi cisternae within the ribbon while not affecting stacking of cisternae.Conclusions and perspectivesA body of work now more than 20 years old has shown that GRASP65 and GRAPS55 are core structural components of a matrix of cytoplasmic proteins associated with Golgi cisternae; however, the Grond et al. (2020) and Zhang and Seemann (2021) reports now firmly establish that GRASP proteins are dispensable for stacking of Golgi cisterna and indicate that they are required for linking Golgi stacks within the ribbon. These new studies suggest that the integrity of the Golgi matrix critically depends on the presence of GRASP proteins, and their absence perturbs the balance of cargo flow through the Golgi, reducing the interstack exchange required to maintain connectivity of stacks within the ribbon. How might GRASP proteins facilitate linking of stacks within the Golgi ribbon? When the ribbon is disrupted (using the microtubule depolymerizing reagent nocodazole) and individual Golgi stacks are examined, GRASP65 and GRASP55 appear to be enriched at the rims of Golgi cisternae (Fig. 1; Tie et al., 2018). Hence, the GRASP proteins are positioned at the vesicle-rich interface between adjacent cisternal stacks. Grond et al. (2020) observed reductions in the size of Golgi cisternae in cells deleted of both GRASP proteins and speculated that this may be due to increased coatomer I vesicle formation at the rims of cisternae. In this view, GRASP proteins dampen vesicle flux at the rims of Golgi cisternae, a model supported by the observation that depletion of GRASP proteins leads to an increase in secretion rate (Wang et al., 2008). These new studies firmly shift our view of GRASP protein function away from the stacking of Golgi cisternae, and we look forward to new mechanistic insights into the roles of GRASP proteins in Golgi ribbon formation as well as in non–Golgi-dependent processes, such as unconventional protein secretion (Kinseth et al., 2007).  相似文献   

7.
The mammalian Golgi apparatus exists as stacks of cisternae that are laterally linked to form a continuous membrane ribbon, but neither the molecular requirements for, nor the purpose of, Golgi ribbon formation are known. Here, we demonstrate that ribbon formation is mediated by specific membrane-fusion events that occur during Golgi assembly, and require the Golgi proteins GM130 and GRASP65. Furthermore, these GM130 and GRASP65-dependent lateral cisternal-fusion reactions are necessary to achieve uniform distribution of enzymes in the Golgi ribbon. The membrane continuity created by ribbon formation facilitates optimal processing conditions in the biosynthetic pathway.  相似文献   

8.
The mammalian Golgi apparatus is organized in the form of a ribbon‐like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be “unlinked” into isolated stacks to allow progression into mitosis. Here we show that the Golgi‐associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK‐mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.  相似文献   

9.
The Golgi apparatus is a highly complex organelle comprised of a stack of cisternal membranes on the secretory pathway from the ER to the cell surface. This structure is maintained by an exoskeleton or Golgi matrix constructed from a family of coiled-coil proteins, the golgins, and other peripheral membrane components such as GRASP55 and GRASP65. Here we find that TMP21, p24a, and gp25L, members of the p24 cargo receptor family, are present in complexes with GRASP55 and GRASP65 in vivo. GRASPs interact directly with the cytoplasmic domains of specific p24 cargo receptors depending on their oligomeric state, and mutation of the GRASP binding site in the cytoplasmic tail of one of these, p24a, results in it being transported to the cell surface. These results suggest that one function of the Golgi matrix is to aid efficient retention or sequestration of p24 cargo receptors and other membrane proteins in the Golgi apparatus.  相似文献   

10.
We have identified a 55 kDa protein, named GRASP55 (Golgi reassembly stacking protein of 55 kDa), as a component of the Golgi stacking machinery. GRASP55 is homologous to GRASP65, an N-ethylmaleimide-sensitive membrane protein required for the stacking of Golgi cisternae in a cell-free system. GRASP65 exists in a complex with the vesicle docking protein receptor GM130 to which it binds directly, and the membrane tethering protein p115, which also functions in the stacking of Golgi cisternae. GRASP55 binding to GM130, could not be detected using biochemical methods, although a weak interaction was detected with the yeast two-hybrid system. Cryo-electron microscopy revealed that GRASP65, like GM130, is present on the cis-Golgi, while GRASP55 is on the medial-Golgi. Recombinant GRASP55 and antibodies to the protein block the stacking of Golgi cisternae, which is similar to the observations made for GRASP65. These results demonstrate that GRASP55 and GRASP65 function in the stacking of Golgi cisternae.  相似文献   

11.
GRASP55 regulates Golgi ribbon formation   总被引:3,自引:1,他引:2  
Recent work indicates that mitogen-activated protein kinase kinase (MEK)1 signaling at the G2/M cell cycle transition unlinks the contiguous mammalian Golgi apparatus and that this regulates cell cycle progression. Here, we sought to determine the role in this pathway of Golgi reassembly protein (GRASP)55, a Golgi-localized target of MEK/extracellular signal-regulated kinase (ERK) phosphorylation at mitosis. In support of the hypothesis that GRASP55 is inhibited in late G2 phase, causing unlinking of the Golgi ribbon, we found that HeLa cells depleted of GRASP55 show a fragmented Golgi similar to control cells arrested in G2 phase. In the absence of GRASP55, Golgi stack length is shortened but Golgi stacking, compartmentalization, and transport seem normal. Absence of GRASP55 was also sufficient to suppress the requirement for MEK1 in the G2/M transition, a requirement that we previously found depends on an intact Golgi ribbon. Furthermore, mimicking mitotic phosphorylation of GRASP55 by using aspartic acid substitutions is sufficient to unlink the Golgi apparatus in a gene replacement assay. Our results implicate MEK1/ERK regulation of GRASP55-mediated Golgi linking as a control point in cell cycle progression.  相似文献   

12.
The stacking of Golgi cisternae involves GRASP65 and GRASP55. The oligomerization of the N-terminal GRASP domain of these proteins, which consists of two tandem PDZ domains, is required to tether the Golgi membranes. However, the molecular basis for GRASP assembly is unclear. Here, we determined the crystal structures of the GRASP domain of GRASP65 and GRASP55. The structures reveal similar homotypic interactions: the GRASP domain forms a dimer in which the peptide-binding pockets of the two neighboring PDZ2 domains face each other, and the dimers are further connected by the C-terminal tail of one GRASP domain inserting into the binding pocket of the PDZ1 domain in another dimer. Biochemical analysis suggests that both types of contacts are relatively weak but are needed in combination for GRASP-mediated Golgi stacking. Our results unveil a novel mode of membrane tethering by GRASP proteins and provide insight into the mechanism of Golgi stacking.  相似文献   

13.
Kuo A  Zhong C  Lane WS  Derynck R 《The EMBO journal》2000,19(23):6427-6439
Transforming growth factor-alpha (TGF-alpha) and related proteins represent a family of transmembrane growth factors with representatives in flies and worms. Little is known about the transport of TGF-alpha and other transmembrane growth factors to the cell surface and its regulation. p59 was purified as a cytoplasmic protein, which at endogenous levels associates with transmembrane TGF-alpha. cDNA cloning of p59 revealed a 452 amino acid sequence with two PDZ domains. p59 is myristoylated and palmitoylated, and associates with the Golgi system, where it co-localizes with TGF-alpha. Its first PDZ domain interacts with the C-terminus of transmembrane TGF-alpha and select transmembrane proteins. p59 is the human homolog of GRASP55, which is structurally related to GRASP65. GRASP55 and GRASP65 have been shown to play a role in stacking of the Golgi cisternae in vitro. C-terminal mutations of transmembrane TGF-alpha, which decrease or abolish the interaction with p59, also strongly impair cell surface expression of TGF-alpha. Our observations suggest a role for membrane tethering of p59/GRASP55 to select transmembrane proteins, including TGF-alpha, in maturation and transport to the cell surface.  相似文献   

14.
Recent studies demonstrated that the Golgi reassembly stacking proteins (GRASPs), especially GRASP55, regulate Golgi-independent unconventional secretion of certain cytosolic and transmembrane cargoes; however, the underlying mechanism remains unknown. Here, we surveyed several neurodegenerative disease–related proteins, including mutant huntingtin (Htt-Q74), superoxide dismutase 1 (SOD1), tau, and TAR DNA–binding protein 43 (TDP-43), for unconventional secretion; our results show that Htt-Q74 is most robustly secreted in a GRASP55-dependent manner. Using Htt-Q74 as a model system, we demonstrate that unconventional secretion of Htt is GRASP55 and autophagy dependent and is enhanced under stress conditions such as starvation and endoplasmic reticulum stress. Mechanistically, we show that GRASP55 facilitates Htt secretion by tethering autophagosomes to lysosomes to promote autophagosome maturation and subsequent lysosome secretion and by stabilizing p23/TMED10, a channel for translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum–Golgi intermediate compartment. Moreover, we found that GRASP55 levels are upregulated by various stresses to facilitate unconventional secretion, whereas inhibition of Htt-Q74 secretion by GRASP55 KO enhances Htt aggregation and toxicity. Finally, comprehensive secretomic analysis identified novel cytosolic cargoes secreted by the same unconventional pathway, including transgelin (TAGLN), multifunctional protein ADE2 (PAICS), and peroxiredoxin-1 (PRDX1). In conclusion, this study defines the pathway of GRASP55-mediated unconventional protein secretion and provides important insights into the progression of Huntington’s disease.  相似文献   

15.
The Golgi reassembly stacking protein (GRASP) family has been implicated in the stacking of Golgi cisternae and the regulation of Golgi disassembly/reassembly during mitosis in mammalian cells. GRASP65 is a dimer that can directly link adjacent surfaces through trans-oligomerization in a mitotically regulated manner. Here we show that the N-terminal GRASP domain (amino acids 1-201) is both necessary and sufficient for dimerization and trans-oligomerization but is not mitotically regulated. The C-terminal serine/proline-rich domain (amino acids 202-446) cannot dimerize nor can it link adjacent surfaces. It does, however, confer mitotic regulation on the GRASP domain through multiple sites phosphorylated by the mitotic kinases, cdc2/B1, and the polo-like kinase. Transient expression corroborated these results by showing that the GRASP domain alone inhibited mitotic fragmentation of the Golgi apparatus.  相似文献   

16.
The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain. In vivo, the membrane association of GRASP proteins is conferred by the simultaneous insertion of an N-terminal myristic acid and binding to a Golgi-associated binding partner. In our assay, the latter contact was replaced using a C-terminal hexa-His moiety, which bound to Ni2+-conjugated lipids incorporated into a substrate-supported bilayer lipid membrane. Nonmyristoylated protein lacked a fixed orientation on the membrane and inefficiently tethered liposomes. In contrast, myristoylated GRASP promoted tethering and exhibited a unique membrane complex. Thus, myristoylation restricts the membrane orientation of the GRASP domain favoring interactions in trans for membrane tethering.  相似文献   

17.
Autophagy controls the quality and quantity of the eukaryotic cytoplasm while performing two evolutionarily highly conserved functions: cell-autonomous provision of energy and nutrients by cytosol autodigestion during starvation, and removal of defunct organelles and large aggregates exceeding the capacity of other cellular degradative systems. In contrast to these autodigestive processes, autophagy in yeast has additional, biogenesis functions. However, no equivalent biosynthetic roles have been described for autophagy in mammals. Here, we show that in mammalian cells, autophagy has a hitherto unappreciated positive contribution to the biogenesis and secretion of the proinflammatory cytokine IL-1β via an export pathway that depends on Atg5, inflammasome, at least one of the two mammalian Golgi reassembly stacking protein (GRASP) paralogues, GRASP55 (GORASP2) and Rab8a. This process, which is a type of unconventional secretion, expands the functional manifestations of autophagy beyond autodigestive and quality control roles in mammals. It enables a subset of cytosolic proteins devoid of signal peptide sequences, and thus unable to access the conventional pathway through the ER, to enter an autophagy-based secretory pathway facilitating their exit from the cytoplasm.  相似文献   

18.
A direct role for GRASP65 as a mitotically regulated Golgi stacking factor   总被引:1,自引:0,他引:1  
Cell-free assays that mimic the disassembly and reassembly cycle of the Golgi apparatus during mitosis implicated GRASP65 as a mitotically regulated stacking factor. We now present evidence that GRASP65 is directly involved in stacking Golgi cisternae. GRASP65 is the major phosphorylation target in rat liver Golgi membranes of two mitotic kinases, cdc2-cyclin B and polo-like kinases, which alone will unstack Golgi membranes, generating single cisternae. Mitotic cells microinjected with antibodies to GRASP65 fail to form proper Golgi stacks after cell division. Beads coated with GRASP65 homodimers form extensive aggregates consistent with the formation of trans oligomers. These can be disaggregated using purified cdc2-cyclin B1 and polo-like kinases, and re-aggregated after dephosphorylation of GRASP65. Together, these data demonstrate that GRASP65 has the properties required to bind surfaces together in a mitotically regulated manner.  相似文献   

19.
Many large coiled-coil proteins are being found associated peripherally with the cytoplasmic face of the organelles of the secretory pathway. Various roles have been proposed for these proteins, including the docking of donor vesicles or organelles to an acceptor organelle prior to fusion, and, in the case of the Golgi apparatus, the stacking of the cisternae [1] [2] [3] [4] [5]. Such critical roles require accurate recruitment to the correct organelle. For the endosomal coiled-coil protein EEA1, targeting requires a carboxy-terminal FYVE domain, which interacts with Rab5 and phosphatidylinositol 3-phosphate (PI(3)P), whereas the Golgi protein GM130 interacts with Golgi membranes via the protein GRASP65 [3] [6] [7]. In this paper, we show that two other mammalian Golgi coiled-coil proteins, golgin-245/p230 and golgin-97, have a conserved domain of about 50 amino acids at their carboxyl termini. This 'GRIP' domain is also found at the carboxyl terminus of several other large coiled-coiled proteins of unknown function, including two human proteins and proteins in the genomes of Caenorhabditis elegans and yeasts. The GRIP domains from several of these proteins, including that from the yeast protein Imh1p, were sufficient to specify Golgi targeting in mammalian cells when fused to green fluorescent protein (GFP). This result suggests that this small domain functions to recruit specific coiled-coil proteins to the Golgi by recognising a determinant that has been well conserved in eukaryotic evolution.  相似文献   

20.
The role of the mitogen-activated protein kinase kinase (MKK)/extracellular-activated protein kinase (ERK) pathway in mitotic Golgi disassembly is controversial, in part because Golgi-localized targets have not been identified. We observed that Golgi reassembly stacking protein 55 (GRASP55) was phosphorylated in mitotic cells and extracts, generating a mitosis-specific phospho-epitope recognized by the MPM2 mAb. This phosphorylation was prevented by mutation of ERK consensus sites in GRASP55. GRASP55 mitotic phosphorylation was significantly reduced, both in vitro and in vivo, by treatment with U0126, a potent and specific inhibitor of MKK and thus ERK activation. Furthermore, ERK2 directly phosphorylated GRASP55 on the same residues that generated the MPM2 phospho-epitope. These results are the first demonstration of GRASP55 mitotic phosphorylation and indicate that the MKK/ERK pathway directly phosphorylates the Golgi during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号