首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser(428), and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKbeta, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases.  相似文献   

3.
4.
Liu X  Yuan H  Niu Y  Niu W  Fu L 《Biochimica et biophysica acta》2012,1822(11):1716-1726
The crosstalk between mTORC1/S6K1 signaling and AMPK is emerging as a powerful and highly regulated way to gauge cellular energy and nutrient content. The aim of the current study was to determine the mechanism by which exercise training reverses lipid-induced insulin resistance and the role of AMPK/mTOR/S6K1 signaling axis in mediating this response in skeletal muscle. Our results showed that high-fat feeding resulted in decreased glucose tolerance, which was associated with decreased Akt expression and increased intramuscular triglyceride deposition in the skeletal muscle of C57BL/6 mice. Impairments in lipid metabolism were accompanied by increased total protein and phosphorylation of S6K1, SREBP-1c cleavage, and decreased AMPK phosphorylation. Exercise training reversed these impairments, resulting in improved serum lipid profiles and glucose tolerance. C2C12 myotubes were exposed to palmitate, resulting in an increased insulin-dependent Akt Ser473 phosphorylation, associated with a significant increase in the level of phosphorylation of S6K1 on T389. All these changes were reversed by activation of AMPK. Consistent with this, inhibition of AMPK by compound C induced an enhanced phosphorylation of both S6K1 and Akt, and silencing of S6K1 with siRNA showed no effect on Akt phosphorylation in both the absence and presence of palmitate cultured myotubes. In addition, compound C led to an elevated SREBP-1c cleavage but was blocked by S6K1 siRNA. In summary, exercise training inhibits SREBP-1c cleavage through AMPK/mTOR/S6K1 signaling, resulting in decreased intramyocellular lipid accumulation. Our results provide new insights into the mechanism by which AMPK/mTOR/S6K1 signaling axis mediates the physiological process of exercise-induced insulin sensitization.  相似文献   

5.
6.
Melatonin exists as an active ingredient in several foods and has been reported to inhibit fatty liver disease in animals; however, its molecular mechanisms are not well elucidated. Herein, we explored effects of melatonin on lipid accumulation induced by oleic acid in HepG2 cells and characterized the underlying molecular mechanisms. Pretreatment with melatonin (0.1–0.3?mM) significantly inhibited accumulation of triglyceride and cholesterol induced by incubating HepG2 cells with high concentrations of oleic acid (oleic acid overload) (p?<?0.05). Melatonin pretreatment induced phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), causing their activation and inactivation, respectively. Expression levels of peroxisome proliferator activated receptor-α (PPARα) and its target gene carnitine palmitoyl-CoA transferase 1 (CPT1), which are associated with lipolysis, were upregulated by melatonin, whereas expression of sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD1), which are associated with lipogenesis, were downregulated. Melatonin did not change expression of genes involved in cholesterol metabolism, including 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) and SREBP-2. Melatonin inhibits lipid accumulation induced by oleic acid overload in HepG2 cells. The phosphorylation and activation of AMPK may have important roles in inactivating lipid anabolic pathways and activating triglyceride catabolic pathways.  相似文献   

7.
Resveratrol (Res) is a natural polyphenolic compound with anti-inflammatory and antioxidant properties. Also, Res can inhibit lipogenesis and adipocyte differentiation. However, the underlying mechanisms of Res's functions remain largely unknown. AMP-activated protein kinase (AMPK) is a key player in adipocyte differentiation. Therefore, the purpose of our study was to determine the role played by AMPK in the Res-mediated regulation of adipocyte differentiation. Incubation of 3T3-L1 cells with Res confirmed that Res inhibited adipocyte differentiation. The phosphorylation of AMPKα was increased by Res in a dose-dependent manner, while total AMPKα levels were unchanged, and peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1c (SREBP-1c) levels were decreased. Interestingly, pretreatment with AMPKα siRNA and Res promoted adipocyte differentiation, while the decrease of p-AMPKα increased PPARγ, C/EBPα, and SREBP-1c protein expression. Our study shows that Res is capable of inhibiting lipogenesis and differentiation of 3T3-L1 adipocytes via activation of AMPK, suggesting its potential therapeutic application in the treatment or prevention of obesity.  相似文献   

8.
The activation of Akt has been proved to involve in the lipogenesis of diabetic nephropathy. However, it's still not clear whether mTOR, another main gene in PI3K/Akt pathway, is also involved in the renal lipogenesis of diabetes. In the present study, it was revealed that the phosphorylation of mTOR was up-regulated in the renal tubular cells of diabetic rats, followed by the over-expression of SREBP-1, ADRP and lipogenesis. Again, high glucose increased the expression of phospho-mTOR accompanied with SREBP-1 and ADRP up-regulation and lipid accumulation in HKC cells. Rapamycin, known as mTOR inhibitor, was used to inhibit the activation of mTOR, which prevented effectively high glucose-induced SREBP-1 up-regulation and lipogenesis in HKC cells. Furthermore, high glucose-stimulated HKC cells transfected with wild-type mTOR vector showed the enhanced SREBP-1 and lipid droplets, however, TE mTOR vector (kinase dead)-transfected HKC cells presented resistance to high glucose and decreased SREBP-1 expression and lipogenesis. These above data suggested that phospho-mTOR mediated lipid accumulation in renal tubular cells of diabetes and might be the potential targets for treating lipogenesis of diabetic nephropathy.  相似文献   

9.
S-Allyl cysteine (SAC), a nontoxic garlic compound, has a variety of pharmacological properties, including antioxidant and hepatoprotective properties. In this report, we provide evidence that SAC prevented free fatty acid (FFA)-induced lipid accumulation and lipotoxicity in hepatocytes. SAC significantly reduced FFA-induced generation of reactive oxygen species, caspase activation and subsequent cell death. Also, SAC mitigated total cellular lipid and triglyceride accumulation in steatotic HepG2 cells. SAC significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells. Additionally, SAC down-regulated the levels of sterol regulatory element binding protein-1 (SREBP-1) and its target genes, including ACC and fatty acid synthase. Use of a specific inhibitor showed that SAC activated AMPK via calcium/calmodulin-dependent kinase kinase (CaMKK) and silent information regulator T1. Our results demonstrate that SAC activates AMPK through CaMKK and inhibits SREBP-1-mediated hepatic lipogenesis. Therefore, SAC has therapeutic potential for preventing nonalcoholic fatty liver disease.  相似文献   

10.
11.
12.
13.
Acute or chronic activation of AMP-activated protein kinase (AMPK) increases insulin sensitivity. Conversely, reduced expression and/or function of AMPK might play a role in insulin resistance in type 2 diabetes. Thus protein expression of the seven subunit isoforms of AMPK and activities and/or phosphorylation of AMPK and acetyl-CoA carboxylase-beta (ACCbeta) was measured in skeletal muscle from obese type 2 diabetic and well-matched control subjects during euglycemic-hyperinsulinemic clamps. Protein expression of all AMPK subunit isoforms (alpha1, alpha2, beta1, beta2, gamma1, gamma2, and gamma3) in muscle of obese type 2 diabetic subjects was similar to that of control subjects. In addition, alpha1- and alpha2-associated activities of AMPK, phosphorylation of alpha-AMPK subunits at Thr172, and phosphorylation of ACCbeta at Ser221 showed no difference between the two groups and were not regulated by physiological concentrations of insulin. These data suggest that impaired insulin action on glycogen synthesis and lipid oxidation in skeletal muscle of obese type 2 diabetic subjects is unlikely to involve changes in AMPK expression and activity.  相似文献   

14.
Honokiol and magnolol, as pharmacological biphenolic compounds of Magnolia officinalis, have been reported to have antioxidant and anti-inflammatory properties. Sterol regulatory element binding protein-1 c (SREBP-1 c) plays an important role in the development and processing of steatosis in the liver. In the present study, we investigated the effects of a combination of honokiol and magnolol on SREBP-1 c-dependent lipogenesis in hepatocytes as well as in mice with fatty liver due to consumption of high-fat diet (HFD). Liver X receptor α (LXRα) agonists induced activation of SREBP-1 c and expression of lipogenic genes, which were blocked by co-treatment of honokiol and magnolol (HM). Moreover, a combination of HM potently increased mRNA of fatty acid oxidation genes. HM induced AMP-activated protein kinase (AMPK), an inhibitory kinase of the LXRα-SREBP-1 c pathway. The role of AMPK activation induced by HM was confirmed using an inhibitor of AMPK, Compound C, which reversed the ability of HM to both inhibit SREBP-1 c induction as well as induce genes for fatty acid oxidation. In mice, HM administration for four weeks ameliorated HFD-induced hepatic steatosis and liver dysfunction, as indicated by plasma parameters and Oil Red O staining. Taken together, our results demonstrated that a combination of HM has beneficial effects on inhibition of fatty liver and SREBP-1 c-mediated hepatic lipogenesis, and these events may be mediated by AMPK activation.  相似文献   

15.
Reduced expression of the Indy (I'm Not Dead, Yet) gene in D.?melanogaster and its homolog in C.?elegans prolongs life span and in D.?melanogaster augments mitochondrial biogenesis in a manner akin to caloric restriction. However, the cellular mechanism by which Indy does this is unknown. Here, we report on the knockout mouse model of the mammalian Indy (mIndy) homolog, SLC13A5. Deletion of mIndy in mice (mINDY(-/-) mice) reduces hepatocellular ATP/ADP ratio, activates hepatic AMPK, induces PGC-1α, inhibits ACC-2, and reduces SREBP-1c levels. This signaling network promotes hepatic mitochondrial biogenesis, lipid oxidation, and energy expenditure and attenuates hepatic de novo lipogenesis. Together, these traits protect mINDY(-/-) mice from the adiposity and insulin resistance that evolve with high-fat feeding and aging. Our studies demonstrate a profound effect of mIndy on mammalian energy metabolism and suggest that mINDY might be a therapeutic target for the treatment of obesity and type 2 diabetes.  相似文献   

16.
Resveratrol (3,5,4-trihydroxystilbene) is a natural polyphenolic compound found in grapes and red wine and has been shown to exert protective effects on the liver preventing lipid accumulation induced by a high-fat diet. However, no studies have shown that the nutritional resveratrol intake by the parental generation has modified lipogenesis in an adult offspring. The aim of this study was to investigate whether maternal resveratrol intake during lactation affects lipogenesis in adult male rat offspring, and if it does, what is the molecular mechanistic basis. Six male pups born from mothers given a control diets during lactation (CC group) and six male pups born from mothers given a control diet as well as resveratrol during lactation (CR group) were fed a standard diet until sacrifice at 36 weeks. Adult male offspring from mothers given resveratrol during lactation (CR group) had lower body weight from the fourth week of lactation until adulthood, but no significant change was observed in the relative food intake. Low levels of plasma triacylglycerol were found in the CR group compared to the CC group. Histopathological analysis of the livers of adult male rat offspring revealed lipid accumulation in hepatocytes in the CC group, whereas lipid droplets were rare in the CR group. Hepatic protein levels of AMPK-phosphorylated at ser403, Sirt1, and Nampt in the CR group were upregulated significantly compared to the CC group. These results indicated the maternal resveratrol intake during lactation-induced activation of AMPK through Sirt1 upregulation. In this study, significant upregulation of the levels of precursor of sterol regulatory element binding protein-1c (SREBP-1c) and downregulation of the ratio of active-SREBP-1c/precusor-SREBP-1c were observed in the CR group compared to the CC group. These results suggested that proteolytic processing of SREBP-1c was suppressed by AMPK in the livers of the CR group. It is well known that SREBP-1c regulates the lipogenic pathway by activating genes involved in triglyceride and fatty acid synthesis. The present study showed significant downregulation of hepatic fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) levels in the CR group. These results indicated that maternal resveratrol intake during lactation suppressed SREBP-1c cleavage and nuclear translocation and repressed SREBP-1c target gene expression such as FAS and ACC in the livers of adult male offspring. These changes attenuate hepatic triacylglycerol and fatty acid synthesis in adult male offspring.  相似文献   

17.
Dose-dependent lipid accumulation was induced by glucose in HepG2 cells. GlcN also exerted a promotory effect on lipid accumulation in HepG2 cells under normal glucose conditions (NG, 5 mM) and liver of normal fed zebrafish larvae. High glucose (HG, 25 mM)-induced lipid accumulation was suppressed by l-glutamine-d-fructose 6-phosphate amidotransferase inhibitors. ER stress inhibitors did not suppress HG or GlcN-mediated lipid accumulation. HG and GlcN stimulated protein expression, DNA binding and O-GlcNAcylation of carbohydrate-responsive element-binding protein (ChREBP). Furthermore, both HG and GlcN increased nuclear sterol regulatory element-binding protein-1 (SREBP-1) levels in HepG2 cells. In contrast to its stimulatory effect under NG, GlcN suppressed lipid accumulation in HepG2 cells under HG conditions. Similarly, GlcN suppressed lipid accumulation in livers of overfed zebrafish. In addition, GlcN activity on DNA binding and O-GlcNAcylation of ChREBP was stimulatory under NG and inhibitory under HG conditions. Moreover, GlcN enhanced ChREBP, SREBP-1c, ACC, FAS, L-PK and SCD-1 mRNA expression under NG but inhibited HG-induced upregulation in HepG2 cells. The O-GlcNAc transferase inhibitor, alloxan, reduced lipid accumulation by HG or GlcN while the O-GlcNAcase inhibitor, PUGNAc, enhanced lipid accumulation in HepG2 cells and liver of zebrafish larvae. GlcN-induced lipid accumulation was inhibited by the AMPK activator, AICAR. Phosphorylation of AMPK (p-AMPK) was suppressed by GlcN under NG while increased by GlcN under HG. PUGNAc downregulated p-AMPK while alloxan restored GlcN- or HG-induced p-AMPK inhibition. Our results collectively suggest that GlcN regulates lipogenesis by sensing the glucose or energy states of normal and excess fuel through AMPK modulation.  相似文献   

18.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

19.
20.
探究木香烃内酯体外对乙醇诱导肝细胞损伤及脂肪变性的影响。建立乙醇导致人LO2肝细胞损伤模型,检测木香烃内酯对细胞活力、ALT和AST释放、脂质生成、脂质调控因子表达及AMPK活性的影响。发现乙醇在高于100 mM浓度时显著抑制肝细胞活力,据此将100 mM浓度的乙醇作为体外刺激肝细胞的实验浓度。木香烃内酯能够逆转乙醇对肝细胞活力的抑制作用,并降低乙醇导致的肝细胞ALT、AST的释放。木香烃内酯能够降低乙醇诱导的肝细胞脂质成分集聚,降低细胞内TG、TC水平。此外,乙醇导致肝细胞中重要的脂质调控转录因子SREBP-1c的表达显著上调,使PPARα的表达显著下调;而木香烃内酯能够减少SREBP-1c的表达并增加PPARα的表达。进一步发现,木香烃内酯显著促进肝细胞中AMPK的磷酸化,且AMPK抑制剂BML-275能够显著削弱木香烃内脂对SREBP-1c和PPARα的调控作用。综上,木香烃内酯体外显著改善乙醇诱导的肝细胞损伤与脂肪变性,该作用与激活AMPK进而调控SREBP-1c与PPARα的表达有关。本研究为将木香烃内酯作为抗酒精性脂肪肝候选药物研究提供实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号