首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although leaf senescence results in a loss of photosynthetic carbon fixation, the senescence-dependent release of nutrients, especially of nitrogen, is important for the growth of young leaves and for reproduction. Environmental regulation of senescence is therefore a vital factor in the carbon and nitrogen economy of plants. Leaf senescence is a highly plastic trait that is affected by a range of different environmental factors including light, nutrient supply, CO2 concentration, and abiotic and biotic stress. In this review, the focus is on the impact of environmental conditions on sugar accumulation and sugar signalling during senescence. By signalling a high availability of carbon relative to nitrogen in the old leaves, sugar accumulation can trigger leaf senescence. Sugar-induced senescence is therefore particularly important under low nitrogen availability and may also play a role in light signalling. Whether or not sugars are involved in regulating the senescence response of plants to elevated CO2 remains unresolved. Senescence can be delayed or accelerated in elevated CO2 and no clear relationship between sugar accumulation and senescence has been found. Plasticity in the response to environmental factors, such as daylength and sugar accumulation, varies between different Arabidopsis accessions. This natural variation can be exploited to analyse the genetic basis of the regulation of senescence and the consequences for growth and fecundity. Different evolutionary strategies, i.e. early senescence combined with a high reproductive effort or late senescence combined with a low reproductive effort, may be an important adaptation of Arabidopsis accessions to their natural habitat.  相似文献   

2.
Molecular aspects of leaf senescence   总被引:28,自引:0,他引:28  
Senescence is the last stage of leaf development and one type of programmed cell death that occurs in plants. The relationships among senescence programs that are induced by a variety of factors have been addressed at a molecular level in recent studies. Furthermore, an overlap between the pathogen-response and senescence programs is beginning to be characterized. The complexity of the senescence program is also evident in studies of senescence-specific gene regulation and the role of photosynthesis and plant hormones in senescence regulation. New molecular-genetic approaches are expected to be useful in unraveling the molecular mechanisms of the leaf senescence program.  相似文献   

3.
  • Senescence is a puzzling phenomenon. Few convincing studies of senescence in perennial herbaceous plants exist. While ramets are known to senesce, whether senescence of bunchgrasses actually occurs is not clear.
  • In this study, we grew a set of plants of Elymus excelsus, a bunchgrass, to examine plant size, sexual reproduction and bud formation in individual plants in relation to their gradual ageing, in order to determine whether E. excelsus experiences senescence. We collected data in two consecutive years (2009 and 2010) from field samples of plants from 1 to 5 years old. Using regression models, we performed age‐related analyses of growth and reproduction parameters.
  • Our results showed that individual plant size (diameter, individual biomass), total biomass of ramets, number and biomass of reproductive ramets, percentage of ramets that were reproductive, reproductive allocation, over‐wintering buds and juvenile ramets all declined with age. However, vegetative growth (number and biomass of vegetative ramets) did not decrease with age.
  • Those plants that survived, dwindled in size as they aged. However, no plants shifted their resource allocation between growth and reproduction as they aged, so the shift in allocation did not account for the fall in size.
  相似文献   

4.
Reactive oxygen species are known to increase in plant senescence. We investigated the participation of antioxidative enzymes in initiation of cotyledon senescence. Senescence of bean (Phaseolus vulgaris L.) cotyledons was modulated by UV C irradiation and by the decapitation of plant apices. Senescence was accompanied by a decrease of protein content and by a decrease of photochemical efficiency. A drop in activity of antioxidative enzymes preceded the onset of senescence in control plants. In cotyledons with prolonged life span, the decrease of antioxidant activities and the markers of senescence onset appeared at a similar age as in controls. Thus we presumed that the period from senescence initiation to cotyledon abscission was extended. On the other hand, in UV C irradiated plants we did not observe actual senescence initiation, and antioxidant enzymes although elevated, did not effectively play their role. The decrease of antioxidant enzymes activity and the markers of senescence appeared at a similar age both in control and in decapitated (D) plants, so we can presume that we prolonged mainly the period from senescence onset to cotyledon abscission in D plants. In UV C irradiated plants the antioxidative enzymes were probably destroyed before the process of senescence could begin.  相似文献   

5.
Deborah Ann Roach 《Genetica》1993,91(1-3):53-64
Senescence is a decline in age-specific survival and reproduction with advancing age. Studies of evolutionary plant senescence are designed to explain this decline in life history components within the context of natural selection. A review of studies of plant demography reveals senescent declines in both annual and perennial plants, but also suggests that there are some plant species which may not be expected to show senescence. Thus, future comparative studies of closely related species, with and without senescence, should be possible. The assumptions of the major evolutionary theories of senescence are evaluated for their validity with respect to plants. Different plant species violate one or more of the assumptions of the theories, yet the consequences of violating these assumptions have never been investigated. Whereas, to date, evolutionary senescence has been studied only indirectly in plants, it is concluded that plants provide good experimental systems for clarifying our understanding of senescence in natural populations.  相似文献   

6.
The flower is the most significant and beautiful part of plants. Flowers are very useful organs in plant developmental phenomenon. During flower bud opening, various events takes place in a well defined sequence, representing all aspects of plant development, such as cell division, cellular differentiation, cell elongation or expansion and a wide spectrum of gene expression. The complexity of flower bud opening illustrates that various biological mechanisms are involved at different stages. Senescence represents the ultimate stage of floral development and results in wilting or abscission of whole flower or flower parts. Senescence is an active process and governed by a well defined cell death program. Once a flower bud opens, the programmed senescence of petal allows the removal of a metabolically active tissue. In leaves, this process can be reversed, but in floral tissue it cannot, indicating that a highly controlled genetic program for cell death is operating. The termination of a flower involves at least two, sometimes overlapping, mechanisms. In one, the perianth abscises before the majority of its cells initiate a cell death program. Abscission may occur before or during the mobilization of food reserves to other parts of the plant. Alternatively, the petals may be more persistent, so that cell deterioration and food remobilization occur while the petals are still part of the flower. The overall pattern of floral opening varies widely between plant genera, therefore, a number of senescence parameters have been used to group plants into somewhat arbitrary categories. Opening and senescence of rose flower is still an unsolved jigsaw in the world of floriculture industry and the mechanism behind the onset of the very early events in the sequence still remains to be elucidated. Hence, for advancing the knowledge on the pertinent aspect of bud opening and senescence the literature has been cited under this review.  相似文献   

7.
In many vertebrates, productivity and survival usually increase with age and then start to decline above a certain age; processes known as reproductive and actuarial senescence. Senescence is widely believed to be driven by the accumulation of somatic damage or mutations. Thus, levels of such cellular damage, and therefore senescence could, in theory, differ between different habitats if they experience different stressors. Urban environments expose animals to a wide range of stressors that pose a challenge to physiological systems and might accelerate the ageing process. We studied productivity and survival of black sparrowhawks across an urban gradient in Cape Town, South Africa. We hypothesise that productivity and survival will first increase with age, but that productivity and survival will then decline above a certain age, due to senescence. Furthermore, we hypothesise that rates of senescence will be accelerated in more urban areas. We used 17 years of data from colour‐ringed individuals. We found no indication of any improvement in productivity with age in early‐life, but we did detect reproductive senescence, with productivity declining above six years of age. However, contrary to our predictions, there were no differences in reproductive senescence along the urban gradient. Similarly, we found that survival rates of adults did not show any strong improvement with age in early life, but decreased with age amongst older birds, providing support for actuarial senescence. However, once again no differences in this pattern were apparent along the urban gradient. This study represents one of the first to examine differences in senescence rates in different habitats. Our results suggest that for this urban adapted species, senescence patterns do not vary according to levels of urbanisation. Whether this pattern holds for species more sensitive to urbanisation remains worthy of exploration.  相似文献   

8.
Senescence, an organismal performance decline with age, has historically been considered a universal phenomenon by evolutionary biologists and zoologist. Yet, increasing fertility and survival with age are nothing new to plant ecologists, among whom it is common knowledge that senescence is not universal. Recently, these two realities have come into a confrontation, begging for the rephrasing of the classical question that has led ageing research for decades: “why do we senesce?” to a more practical “what are the mechanisms by which some organisms escape from senescence?” Plants are amenable to examining this question because of their rich repertoire of life history strategies. These include the existence of permanent seed banks, vegetative dormancy and ability to produce clones, among others. Here, I use a large number of high resolution demographic models from 181 species that reflect life history strategies and their trade-offs among herbaceous perennials, succulents and shrubs measured under field conditions worldwide to examine whether senescence rates of ramets from clonal plants differ from those of whole plants reproducing either strictly sexually, or with a combination of sexual and clonal mechanisms. Contrary to the initial expectation from the mutation accumulation theory of senescence, ramets of clonal plants were more likely to exhibit senescence than those species employing sexual reproduction. I discuss why these comparisons between ramets and genets are useful, as well as its implications and future directions for ageing research.  相似文献   

9.
Senescence of rice ( Oryza sativa L. cv. Jaya) leaves was regulated with kinetin and abscisic acid (ABA) sprays at the reproductive stage. The effect of such sprays on grain-filling and yield was analyzed. Spraying 100-day-old plants with kinetin solution (100 μg ml-1) significantly delayed senescence as indicated by higher total chlorophyll and protein levels in the three uppermost leaves compared with the controls. In contrast, spraying with ABA (15 μg ml-1) significantly promoted foliar senescence. The number of spikelets per panicle, number of panicles, percentage filled grains, panicle weight and grain yield per plant and the mobilization and harvest indices were significantly increased by kinetin treatment, while ABA decreased most of them. The possibility of increased grain-filling and thus, yield due to delayed foliar senescence by kinetin treatment and decreased grain-filling due to hastening of senescence by ABA is discussed.  相似文献   

10.
The molecular analysis of leaf senescence--a genomics approach   总被引:2,自引:0,他引:2  
Senescence in green plants is a complex and highly regulated process that occurs as part of plant development or can be prematurely induced by stress. In the last decade, the main focus of research has been on the identification of senescence mutants, as well as on genes that show enhanced expression during senescence. Analysis of these is beginning to expand our understanding of the processes by which senescence functions. Recent rapid advances in genomics resources, especially for the model plant species Arabidopsis, are providing scientists with a dazzling array of tools for the identification and functional analysis of the genes and pathways involved in senescence. In this review, we present the current understanding of the mechanisms by which plants control senescence and the processes that are involved.  相似文献   

11.
Senescence mechanisms   总被引:24,自引:0,他引:24  
Senescence in plants is usually viewed as an internally programmed degeneration leading to death. It is a developmental process that occurs in many different tissues and serves different purposes. Generally, apoptosis refers to programmed death of small numbers of animal cells, and it shows some special features at the cell level. Some senescing plant cells show some symptoms typical of apoptosis, while others do not. This review will focus primarily on leaf senescence with ultimate aim of explaining whole plant senescence (i.e., monocarpic senescence). Traditionally, the ideas on senescence mechanisms fall into two major groupings, nutrient deficiencies (e.g., starvation) and genetic programming (i.e., senescence-promoting and senescence-inhibiting genes). Considerable evidence indicates that nutrient deficiencies are not central senescence program components, while increasing evidence supports genetic programming. Because chlorophyll (Chl) and chloroplast (CP) breakdown are so prominent, leaf senescence is generally measured in terms of Chl loss. Although CP breakdown may not be the proximate cause of leaf cell death, it certainly is important as a source of nutrients for use elsewhere, e.g., for developing reproductive structures in monocarpic plants, and this loss limits assimilatory capacity. The CP is dismantled in an orderly sequence. Individual protein complexes seem to be taken out all at once, not one subunit at a time. Removal of any component, e.g., Chl, seems to destabilize the whole complex. It is of special interest that senescing CPs secrete Chl-containing globules indicating that some CP components are broken down outside the CP. Senescence appears to be imposed on the CP by the nucleus, and all the known senescence-altering genes except one, cytG in soybean, are nuclear. Only the d1d2 mutation(s) in soybean prevents a broad range of leaf senescence processes. Exactly, what causes cell death is unclear; however, the selective thiol protease inhibitor, E-64, does delay death, and this suggests that proteases play a key role.  相似文献   

12.
Abstract: Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. In order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.  相似文献   

13.
Defining senescence and death   总被引:25,自引:0,他引:25  
  相似文献   

14.
Dudycha JL 《Oecologia》2003,135(4):555-563
Senescence is a general decline of physiological state that accompanies advancing age. It affects nearly all organisms, but patterns of senescence vary markedly, even among closely related taxa. Understanding the evolution of this diversity requires information about environmental effects on the expression of variation among taxa. I examined genetically-based variation of senescence within and between two species complexes of Daphnia in four environments. The environments were defined by large differences in food and temperature, two factors known to influence senescence. The species studied were chosen to represent sister species that likely experience divergent (D. pulex and D. pulicaria) or similar (D. mendotate and D. dentifera) selection pressures on senescence. Overall, D. pulex expressed the greatest demographic senescence, D. mendotae and D. dentifera were intermediate, and D. pulicaria expressed the least. In environments representative of typical natural conditions, D. pulex had greater senescence than D. pulicaria, regardless of how late-life performance was assessed. This shows that genetic-environment interactions do not confound the interpretation of senescence differences between these species as the result of selective differences between their habitats. Comparison of D. mendotae and D. dentifera primarily revealed similar life histories, although differences in reproductive declines occurred in some environments. The joint observation of similar mortality patterns but dissimilar fecundity declines suggests that the trade-off between survival and reproduction changes with age. This calls into question the utility of only studying mortality for understanding evolutionary change of senescence in nature.  相似文献   

15.
Plant senescence and crop productivity   总被引:3,自引:0,他引:3  
  相似文献   

16.
Senescence is a phase of leaf ontogeny marked by declining photosynthetic activity that is paralleled by a decline in chloroplast function. The photosystem II in a plant is considered to be the primary site where delayed fluorescence (DF) is produced. We report here a simple, rapid, and non-invasive technique for detecting plants senescence based on quantitative measurements of DF. In the experimental study, various senescence symptoms induced by age or hormones were examined in the Catharanthus roseus L. G. Don plants. Detecting the DF emissions from leaves with a home-made DF biosensor enables DF parameters of C. roseus to be produced in a short time. Meanwhile, evaluations of leaves senescence were made from measurements of chlorophyll content, ion leakage, and net photosynthesis rate (Pn) based on the consumption of CO2 in the tested plants. The results of our investigation demonstrate that the changes in DF intensity of green plants can truly reflect the changes in photosynthetic capacity and chlorophyll content during age-dependent and hormone-modulated senescence. Moreover, the DF intensity negatively correlates with ion leakage in both types of senescence. With proper calibration, DF may provide an important approach for monitoring senescence process in vivo and quantitatively evaluating senescence extent. Therefore, a DF technique could be potentially useful for less time-consuming and automated screening of the interesting mutants with genetic modifications that change the plant senescence progress.  相似文献   

17.
Ray S  Choudhuri MA 《Plant physiology》1981,68(6):1345-1348
The pattern of senescence was studied by following the changes in chlorophyll and protein in the leaves and by measuring 32P retention and export from source to sink during development of the rice plant (Oryza sativa L. cv. Jaya) subjected to different manipulative treatments. With the advance of reproductive development, the chronological sequence of leaf senescence was changed, so that the flag and the third leaf senesced earlier than did the second leaf. In presence of the daughter shoot of defruited plants, senescence was delayed in all three leaves of the mother plant, as compared to the same leaves of intact plants. Senescence of all three leaves was further delayed when both panicle and daughter shoots were removed from the plant. The above manipulative treatments caused the initial sequential pattern of senescence of leaves to persist. Removal of both panicle and daughter shoots caused little export of 32P between leaves. In the presence of daughter shoots of defruited plants, export of 32P was maximum from leaves of the mother plant to the nearest daughter shoots. This led to earlier senescence of such mother plant leaves than that of plants from which both panicle and daughter shoots were removed. The pattern of senescence and export of 32P in the flag and the second leaf of the daughter shoot was essentially the same as that of the intact plant. Based on these findings, it was concluded that mobilization of metabolites from source to sink is the primary cause of monocarpic senescence in rice.  相似文献   

18.
Leaf senescence is an active process involving remobilization of nutrients from senescing leaves to other parts of the plant. Whereas senescence is accompanied by a decline in leaf cytokinin content, supplemental cytokinin delays senescence. Plants that overexpress isopentenyl transferase (ipt), a cytokinin-producing gene, or knotted1 (kn1), a homeobox gene, have many phenotypes in common. Many of these phenotypes are characteristic of altered cytokinin physiology. The effect of kn1 on leaf senescence was tested by driving its expression using the promoter of the senescence-associated gene SAG12. SAG:kn1 tobacco plants showed a marked delay in leaf senescence but otherwise developed normally. The delay in senescence was revealed by an increase in chlorophyll content in SAG:kn1 leaves relative to leaves of the control plants and by a decrease in the number of dead leaves. Senescence was also delayed in detached leaves of SAG:kn1 plants. Delayed senescence was accompanied by increased leaf cytokinin content in older leaves expressing kn1. These experiments extend the current understanding of kn1 function and suggest that in addition to mediating meristem maintenance, kn1 is capable of regulating the onset of senescence in leaves.  相似文献   

19.
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well‐defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.  相似文献   

20.
Senescence is often described as an age‐dependent increase in natural mortality (known as actuarial senescence) and an age‐dependent decrease in fecundity (known as reproductive senescence), and its role in nature is still poorly understood. Based on empirical estimates of reproductive and actuarial senescence, we used mathematical simulations to explore how senescence affects the population dynamics of Coregonus albula, a small, schooling salmonid fish. Using an empirically based eco‐evolutionary model, we investigated how the presence or absence of senescence affects the eco‐evolutionary dynamics of a fish population during pristine, intensive harvest, and recovery phases. Our simulation results showed that the presence or absence of senescence affected how the population responded to the selection regime. At an individual level, gillnetting caused a larger decline in asymptotic length when senescence was present, compared to the nonsenescent population, and the opposite occurred when fishing was done by trawling. This change was accompanied by evolution toward younger age at maturity. At the population level, the change in biomass and number of fish in response to different fishery size‐selection patterns depended on the presence or absence of senescence. Since most life‐history and fisheries models ignore senescence, they may be over‐estimating reproductive capacity and under‐estimating natural mortality. Our results highlight the need to understand the combined effects of life‐history characters such as senescence and fisheries selection regime to ensure the successful management of our natural resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号