首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubility plays a very important role in the selection of compounds for drug screening. In this context, a QSAR model was developed for predicting water solubility of drug-like compounds. First, a set of relevant parameters for establishing a drug-like chemical space was defined. The comparison of chemical structures from the FDAMDD and PHYSPROP databases allowed the selection of properties that were more efficient in discriminating drug-like compounds from other chemicals. These filters were later on applied to the PHYSPROP database and 1174 chemicals fulfilling these criteria and with experimental solubility information available at 25 °C were retained. Several QSAR solubility models were developed from this set of compounds, and the best one was selected based on the accuracy of correct classifications obtained for randomly chosen training and validation subsets. Further validation of the model was performed with a set of 102 drugs for which experimental solubility data have been recently reported. A good agreement between the predictions and the experimental values confirmed the reliability of the QSAR model.  相似文献   

2.
3.
We previously reported a classical quantitative structure-activity relationship (QSAR) equation for permeability coefficients (P(app-pampa)) by parallel artificial membrane permeation assay (PAMPA) of structurally diverse compounds with simple physicochemical parameters, hydrophobicity at a particular pH (logP(oct) and |pK(a)-pH|), hydrogen-accepting ability (SA(HA)), and hydrogen-donating ability (SA(HD)); however, desipramine, imipramine, and testosterone, which have high logP(oct) values, were excluded from the derived QSAR equation because their measured P(app-pampa) values were lower than calculated. In this study, for further investigation of PAMPA permeability of hydrophobic compounds, we experimentally measured the P(app-pampa) of more compounds with high hydrophobicity, including several pesticides, and compared the measured P(app-pampa) values with those calculated from the QSAR equation. As a result, compounds having a calculated logP(app-pampa)>-4.5 showed lower measured logP(app-pampa) than calculated because of the barrier of the unstirred water layer and the membrane retention of hydrophobic compounds. The bilinear QSAR model explained the PAMPA permeability of the whole dataset of compounds, whether hydrophilic or hydrophobic, with the same parameters as the equation in the previous study. In addition, PAMPA permeability coefficients correlated well with Caco-2 cell permeability coefficients. Since Caco-2 cell permeability is effective for the evaluation of human oral absorption of compounds, the proposed bilinear model for PAMPA permeability could be useful for not only effective screening for several drug candidates but also the risk assessment of chemicals and agrochemicals absorbed by humans.  相似文献   

4.
5.
To evaluate the absorption of drugs with diverse structures across a membrane via the transcellular route, their permeability was measured using the parallel artificial membrane permeation assay (PAMPA). The permeability coefficients obtained by PAMPA were analyzed using a classical quantitative structure-activity relationship (QSAR) approach with simple physicochemical parameters and 3D-QSAR, VolSurf. We formulated correlation equations for diverse drugs similar to the equation obtained for peptide-related compounds in our previous study. The hydrogen-bonding ability of molecules, not only the hydrogen-accepting ability but also the hydrogen-donating ability, in addition to hydrophobicity at a particular pH, was significant in determining variations in PAMPA permeability coefficients. Based on this result, an in silico good prediction model for the passive transcellular permeability of diverse structural compounds was obtained. The artificial lipid-membrane permeability coefficients of the drugs, except salicylic acid, were well correlated with the Caco-2 permeability in a previous report suggesting the importance of absorption by the transcellular mechanism for these drugs.  相似文献   

6.
7.
8.
The recently introduced field-based QSAR was employed to develop robust quantitative 3D QSAR models to comprehend the activity of several structurally diverse classes of small molecule renin inhibitors reported in literature. A reasonable predictive model with an r2 (pred) of ~0.67 and rmse of 0.79 was achieved for an external validation set of ~150 compounds centered on the model developed using ~450 training set compounds. Based on the developed 3D QSAR models and additional insights gained from reported X-ray structures, opportunity for activity improvements in the [aza]indole scaffold was explored using a carefully designed virtual library of ~2300 compounds. The potential for success of such combined structure-guided and ligand-based approach was justified when the resulting prediction was compared against a representative with supporting experimental results.  相似文献   

9.
10.
To evaluate absorption of compounds across the membrane via a transcellular route, the permeability of peptide derivatives and related compounds was measured by the parallel artificial membrane permeation assay (PAMPA). The permeability coefficients by PAMPA were analyzed quantitatively using classical QSAR and Volsurf approaches with the physicochemical parameters. The results from both approaches showed that hydrogen bonding ability of molecules in addition to hydrophobicity at a particular pH were significant in determining variations in PAMPA permeability coefficients. The relationship between Caco-2 cell permeability and artificial lipid membrane permeability was then determined. The compounds were sorted according to their absorption pathway in the plot of the Caco-2 cell and PAMPA permeability coefficients.  相似文献   

11.
The virtual combinatorial chemistry approach as a methodology for generating chemical libraries of structurally-similar analogs in a virtual environment was employed for building a general mixed virtual combinatorial library with a total of 53.871 6-FQ structural analogs, introducing the real synthetic pathways of three well known 6-FQ inhibitors. The druggability properties of the generated combinatorial 6-FQs were assessed using an in-house developed drug-likeness filter integrating the Lipinski/Veber rule-sets. The compounds recognized as drug-like were used as an external set for prediction of the biological activity values using a neural-networks (NN) model based on an experimentally-determined set of active 6-FQs. Furthermore, a subset of compounds was extracted from the pool of drug-like 6-FQs, with predicted biological activity, and subsequently used in virtual screening (VS) campaign combining pharmacophore modeling and molecular docking studies. This complex scheme, a powerful combination of chemometric and molecular modeling approaches provided novel QSAR guidelines that could aid in the further lead development of 6-FQs agents.  相似文献   

12.
The parallel artificial membrane permeation assay (PAMPA) was developed as a model for the prediction of transcellular permeation in the process of drug absorption. Our research group has measured the PAMPA permeability of peptide‐related compounds, diverse drugs, and agrochemicals. This work led to a classical quantitative structure–activity relationship (QSAR) equation for PAMPA permeability coefficients of structurally diverse compounds based on simple physicochemical parameters such as lipophilicity at a particular pH (log Poct and |pKa?pH|), H‐bond acceptor ability (SAHA), and H‐bond donor ability (SAHD). Since the PAMPA permeability of lipophilic compounds decreased with their apparent lipophilicity due to the unstirred water layer (UWL) barrier on membrane surfaces and to membrane retention, a bilinear QSAR model was introduced to explain the permeability of a broader set of compounds using the same physicochemical parameters as those used for the linear model. We also compared PAMPA and Caco‐2 cell permeability coefficients of compounds transported by various absorption mechanisms. The compounds were classified according to their absorption pathway (passively transported compounds, actively transported compounds, and compounds excreted by efflux systems) in the plot of Caco‐2 vs. PAMPA permeability. Finally, based on the QSAR analyses of PAMPA permeability, an in silico prediction model of human oral absorption for possibly transported compounds was proposed, and the usefulness of the model was examined.  相似文献   

13.
Carcinogenicity is one of the toxicological endpoints causing the highest concern. Also, the standard bioassays in rodents used to assess the carcinogenic potential of chemicals and drugs are extremely long, costly and require the sacrifice of large numbers of animals. For these reasons, we have attempted development of a global quantitative structure-activity relationship (QSAR) model using a data set of 1464 compounds (the Galvez data set available from http://www.uv.es/-galvez/tablevi.pdf), including many marketed drugs for their carcinogenesis potential. Though experimental toxicity testing using animal models is unavoidable for new drug candidates at an advanced stage of drug development, yet the developed global QSAR model can in silico predict the carcinogenicity of new drug compounds to provide a tool for initial screening of new drug candidate molecules with reduced number of animal testing, money and time. Considering large number of data points with diverse structural features used for model development (n(training) = 732) and model validation (n(test) = 732), the model developed in this study has an encouraging statistical quality (leave-one-out Q2 = 0.731, R2pred = 0.716). Our developed model suggests that higher lipophilicity values and conjugated ring systems, thioketo and nitro groups contribute positively towards drug carcinogenicity. On the contrary, tertiary and secondary nitrogens, phenolic, enolic and carboxylic OH fragments and presence of three-membered rings reduce the carcinogenicity. Branching, size and shape are found to be crucial factors for drug-induced carcinogenicity. One may consider all these points to reduce carcinogenic potential of the molecules.  相似文献   

14.
Permeability coefficients across monolayers of the human colon carcinoma cell line Caco-2, cultured on permeable supports, are commonly used to predict the absorption of orally administered drugs and other xenobiotics. This protocol describes our method for the cultivation, characterization and determination of permeability coefficients of xenobiotics (which are, typically, drug-like compounds) in the Caco-2 model. A few modifications that have been introduced over the years are incorporated in the protocol. The method can be used to trace the permeability of a test compound in two directions, from the apical to the basolateral side or vice versa, and both passive and active transport processes can be studied. The permeability assay can be completed within one working day, provided that the Caco-2 monolayers have been cultured and differentiated on the permeable supports 3 weeks in advance.  相似文献   

15.
QSAR studies of HIV-1 integrase inhibition   总被引:4,自引:0,他引:4  
  相似文献   

16.
17.
18.
Abstract

HCV NS5B polymerase has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting Hepatitis C Virus genotype 1 (HCV GT1). Hepatitis C virus genotype 4a (HCV GT4a) dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS5B polymerase of GT4a using homology modeling, protein–ligand interaction fingerprint (PLIF), docking, pharmacophore, and 3D CoMFA quantitative structure activity relationship (QSAR). Firstly, a high-quality 3D model of HCV NS5B polymerase of GT4a was constructed using crystal structure of HCV NS5B polymerase of GT1 (PDB ID: 3hkw) as a template. Then, both the model and the template were simulated to compare conformational stability. PLIF was generated using five crystal structures of HCV NS5B (PDB ID: 4mia, 4mib, 4mk9, 4mka, and 4mkb), which revealed the most important residues and their interactions with the co-crystalized ligands. After that, a 3D pharmacophore model was developed from the generated PLIF data and then used as a screening filter for 17000328 drug-like zinc database compounds. 900 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. Finally, a 3D CoMFA QSAR was developed using 42 compounds as a training and 19 compounds as a test set. The 3D CoMFA QSAR was used to design and screen some potential inhibitors, these compounds were further evaluated by the docking stage. The highest ranked five hits from docking result (compounds (p1–p4) and compound q1) were selected for further analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
Oxazolidinones exemplified by eprezolid and linezolid are a new class of antibacterials that are active against Gram positive and anaerobic bacteria including methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE) and vancomycin resistant enterococci (VRE). In an effort to have a better antibacterial agent in the oxazolidinone class, we have performed three-dimensional quantitative structure-activity relationship (3D-QSAR) studies for a series of tricyclic oxazolidinones. 3D-QSAR studies were performed using the Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) procedures. These studies were performed using 42 compounds; the QSAR model was developed using a training set of 33 compounds. The predictive ability of the QSAR model was assessed using a test set of 9 compounds. The predictive 3D-QSAR models have conventional r(2) values of 0.975 and 0.940 for CoMFA and CoMSIA respectively; similarly, cross-validated coefficient q(2) values of 0.523 and 0.557 for CoMFA and CoMSIA, respectively, were obtained. The CoMFA 3D-QSAR model performed better than the CoMSIA model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号