首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary explanations of aging (or senescence) fall into two classes. First, organisms might have evolved the optimal life history, in which survival and fertility late in life are sacrificed for the sake of early reproduction or high pre-adult survival. Second, the life history might be depressed below this optimal compromise by the influx of deleterious mutations; since selection against late-acting mutations is weaker, deleterious mutations will impose a greater load on late life. We discuss ways in which these theories might be investigated and distinguished, with reference to experimental work withDrosophila. While genetic correlations between life history traits determine the immediate response to selection, they are hard to measure, and may not reflect the fundamental constraints on life history. Long term selection experiments are more likely to be informative. The third approach of using experimental manipulations suffers from some of the same problems as measures of genetic correlations; however, these two approaches may be fruitful when used together. The experimental results so far suggest that aging inDrosophila has evolved in part as a consequence of selection for an optimal life history, and in part as a result of accumulation of predominantly late-acting deleterious mutations. Quantification of these effects presents a major challenge for the future.  相似文献   

2.
Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness‐related traits. Such trade‐offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade‐offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed‐selection lines and (2) comparing life‐history traits of evolved and control lines in pathogen‐free environments. Here, we used both approaches to examine trade‐offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life‐history traits between control and evolved populations were found in pathogen‐free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation.  相似文献   

3.
Behavioural responses to reduce predation risk might cause demographic ‘costs of fear’. Costs differ among species, but a conceptual framework to understand this variation is lacking. We use a life‐history framework to tie together diverse traits and life stages to better understand interspecific variation in responses and costs. We used natural and experimental variation in predation risk to test phenotypic responses and associated demographic costs for 10 songbird species. Responses such as increased parental attentiveness yielded reduced development time and created benefits such as reduced predation probability. Yet, responses to increased risk also created demographic costs by reducing offspring production in the absence of direct predation. This cost of fear varied widely across species, but predictably with the probability of repeat breeding. Use of a life‐history framework can aid our understanding of potential demographic costs from predation, both from responses to perceived risk and from direct predation mortality.  相似文献   

4.
On luck and sex     
Sex has many costs with respect to asexual reproduction, so its ubiquity is a puzzle. There has been a continuing effort to identify general circumstances in which aspects of sex generate an evolutionary advantage over asexual reproduction. Here we focus on the generality that individuals can experience good and bad "luck" at various stages of their life history regardless of genotype, and on the interindividual nature of sex. Sexual outcrossing combines genetic information from individuals with potentially different experiences, so it is conceivable that sex might reduce the contribution of individual luck to noise in inheritance. In a simple way, we derive expressions for noise in inheritance in terms of some sources of within-generation ecological noise. We demonstrate that interindividual reproduction can indeed dampen the effects of ecological noise better than lone-individual modes, but there are conditions under which it does not. Empirical and theoretical work on plants, modeled here, suggest noise dampening conditions. Ecological noise dampening operates alongside other features of sex such as recombination and segregation and, because noise in inheritance weakens the role of selection in genetic change, we speculate that noise dampening may offer a benefit to be deducted from the costs of sex. We also suggest that the amount of selfing relative to outcrossing observed in natural populations may be influenced by the amount of individual-level ecological noise in a given habitat.  相似文献   

5.
Life history theory has become a prominent framework in the evolutionary social sciences, and the concept of trade-offs, the cornerstone of life history theory in studies on non-human taxa, has likewise been widely adopted. Yet, human life history research often assumes trade-offs without demonstrating them. This is not surprising given the practical difficulties in measuring trade-offs in long-lived animals, like humans. Four main methods are used to demonstrate trade-offs: phenotypic correlations, experimental manipulations, genetic correlations and correlated responses to selection. Here, I discuss challenges with these methods along with potential solutions. For example, individual heterogeneity within a population in quality or access to resources can mask underling trade-offs, and this can be accounted for by careful experimental manipulation or proper statistical treatment of observational data. In general, trade-offs have proven more difficult than expected to measure, and evidence across species is mixed, but strong evidence exists in some cases. I use the key trade-off between reproduction and survival to exemplify methods, challenges and solutions, and review the mixed evidence for a cost of reproduction in humans. I conclude by providing directions for future research. Promising avenues are opening thanks to recent advances in quantitative genetic and genomic methods coupled with the availability of high-quality large-scale datasets on humans from different populations, allowing the study of the evolutionary implications of life history trade-offs in humans.  相似文献   

6.
Costs of resistance, i.e. trade‐offs between resistance to parasites or pathogens and other fitness components, may prevent the fixation of resistant genotypes and therefore explain the maintenance of genetic polymorphism for resistance in the wild. Using two approaches, the cost of resistance to a sterilizing bacterial pathogen were tested for in the crustacean Daphnia magna. First, groups of susceptible and resistant hosts from each of four natural populations were compared in terms of their life‐history characteristics. Secondly, we examined the competitiveness of nine clones from one population for which more detailed information on genetic variation for resistance was known. In no case did the results show that competitiveness or life history characteristics of resistant Daphnia systematically differed from susceptible ones. These results suggest that costs of resistance are unlikely to explain the maintenance of genetic variation in D. magna populations. We discuss methods for measuring fitness and speculate on which genetic models of host‐parasite co‐evolution may apply to the Daphnia‐microparasite system.  相似文献   

7.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

8.
Size-mediated ageing reduces vigour in trees   总被引:4,自引:0,他引:4  
There is increasing interest in understanding the costs and benefits of increased size and prolonged lifespan for plants. Some species of trees can grow more than 100 m in height and can live for several millennia, however whether these achievements are obtained at the cost of some other physiological functions is currently unclear. As increases in size are usually associated with ageing, it is also unclear whether observed reductions in growth rates and increased mortality rates are a function of size or of age per se. One theory proposes that reduced growth after the start of the reproductive phase is caused by cellular senescence. A second set of theories has focussed instead on plant size and the increased respiratory burdens or excessive height. We report on experimental manipulations to separate the effects of extrinsic factors such as size from those of intrinsic factors such as age for four tree species of contrasting phylogeny and life history. For each species, we measured growth, gas exchange and leaf biochemical properties for trees of different ages and sizes in the field and on propagated material obtained from the same genetic individuals but now all of small similar size in our common gardens. For all species, evidence indicated that size, not cellular senescence, accounted for the observed age‐related declines in relative growth rates and net assimilation rates. Two species exhibited evidence of genetic control on leaf characters such as specific leaf area, although size also exerted an independent, and stronger, effect. We found partial support for the theory of hydraulic limitations to tree growth. The lack of a marked separation of soma and germline, an unlimited proliferation potential of meristem cells and the exponential increase in reproductive effort with size all help explain the lack of a senescence‐induced decline in trees. It is possible that trees much older than the ones we sampled exhibit senescence symptoms.  相似文献   

9.
The correlation between brain size and life history has been investigated in many previous studies, and several viable explanations have been proposed. However, the results of these studies are often at odds, causing uncertainties about whether these two character complexes underwent correlated evolution. These disparities could arise from the mixture of wild and captive values in the datasets, potentially obscuring real relationships, and from differences in the methods of controlling for phylogenetic non independence of species values. This paper seeks to resolve these difficulties by (1) proposing an overarching hypothesis that encompasses many of the previously proposed hypotheses, and (2) testing the predictions of this hypothesis using rigorously compiled data and utilizing multiple methods of analysis. We hypothesize that the adaptive benefit of increased encephalization is an increase in reproductive lifespan or efficiency, which must be sufficient to outweigh the costs due to growing and maturing the larger brain. These costs and benefits are directly reflected in the length of life history stages. We tested this hypothesis on a wide range of primate species. Our results demonstrate that encephalization is significantly correlated with prolongation of all stages of developmental life history except the lactational period, and is significantly correlated with an extension of the reproductive lifespan. These results support the contention that the link between brain size and life history is caused by a balance between the costs of growing a brain and the survival benefits the brain provides. Thus, our results suggest that the evolution of prolonged life history during human evolution is caused by increased encephalization.  相似文献   

10.
Changing environments have the potential to alter the fitness of organisms through effects on components of fitness such as energy acquisition, metabolic cost, growth rate, survivorship, and reproductive output. Organisms, on the other hand, can alter aspects of their physiology and life histories through phenotypic plasticity as well as through genetic change in populations (selection). Researchers examining the effects of environmental variables frequently concentrate on individual components of fitness, although methods exist to combine these into a population level estimate of average fitness, as the per capita rate of population growth for a set of identical individuals with a particular set of traits. Recent advances in energetic modeling have provided excellent data on energy intake and costs leading to growth, reproduction, and other life‐history parameters; these in turn have consequences for survivorship at all life‐history stages, and thus for fitness. Components of fitness alone (performance measures) are useful in determining organism response to changing conditions, but are often not good predictors of fitness; they can differ in both form and magnitude, as demonstrated in our model. Here, we combine an energetics model for growth and allocation with a matrix model that calculates population growth rate for a group of individuals with a particular set of traits. We use intertidal mussels as an example, because data exist for some of the important energetic and life‐history parameters, and because there is a hypothesized energetic trade‐off between byssus production (affecting survivorship), and energy used for growth and reproduction. The model shows exactly how strong this trade‐off is in terms of overall fitness, and it illustrates conditions where fitness components are good predictors of actual fitness, and cases where they are not. In addition, the model is used to examine the effects of environmental change on this trade‐off and on both fitness and on individual fitness components.  相似文献   

11.
A plant species' genetic population structure is the result of a complex combination of its life history, ecological preferences, position in the ecosystem and historical factors. As a result, many different statistical methods exist that measure different aspects of species' genetic structure. However, little is known about how these methods are interrelated and how they are related to a species' ecology and life history. In this study, we used the IntraBioDiv amplified fragment length polymorphisms data set from 27 high-alpine species to calculate eight genetic summary statistics that we jointly correlate to a set of six ecological and life-history traits. We found that there is a large amount of redundancy among the calculated summary statistics and that there is a significant association with the matrix of species traits. In a multivariate analysis, two main aspects of population structure were visible among the 27 species. The first aspect is related to the species' dispersal capacities and the second is most likely related to the species' postglacial recolonization of the Alps. Furthermore, we found that some summary statistics, most importantly Mantel's r and Jost's D, show different behaviour than expected based on theory. We therefore advise caution in drawing too strong conclusions from these statistics.  相似文献   

12.
Humans are characterized by a suite of traits that seem to differentiate them profoundly from closely related apes such as the gorilla, chimpanzee, and orang‐utan. These traits include longevity, cooperative breeding, stacking of offspring, lengthy maturation, and a complex life‐course profile of adiposity. When, how, and why these traits emerged during our evolutionary history is currently attracting considerable attention. Most approaches to life history emphasize dietary energy availability and the risk of mortality as the two key stresses shaping life‐history variability between and within species. The high energy costs of the large Homo brain are also seen as the central axis around which other life‐history traits were reorganized. I propose that ecological volatility may have been a key stress, selecting in favor of the suite of traits in order to tolerate periods of energy scarcity, and increase reproductive output during periods of good conditions. Theses life‐history adaptations may have preceded and enabled the trend toward encephalization. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Costs of reproduction include the costs of mating and egg production. Specific techniques such as irradiation or genetic mutation have been used to divide the expense into costs of mating and egg production in previous studies. We tried to divide the costs in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae), which needs some kinds of bean as an oviposition substrate. Mated females that were not allowed to lay eggs had a shorter life span than virgin females, but they had a longer life span than mated females that were allowed to lay eggs. The results showed two independent significant costs, mating and egg production, on the life span in C. chinensis. Costs of mating, however, include the costs of sexual harassment by males and copulation itself, and we need further studies to divide the costs. The present method for dividing the cost of reproduction into costs of mating and egg production can be applied to a broad taxonomic range of insect species, and thus it will be a useful model system for inter-specific comparisons of costs of mating and egg production.  相似文献   

14.
Phylogenetic reconstruction methods are subject to two types of limitations: our knowledge about the true history of organisms and the gross simplification implied in the numerical simulation models of the relationships between them. In such a situation, experimental phylogenetics provides a way to assess the accuracy of the phylogenetic reconstruction methods. Nonetheless, this capacity is only feasible for organisms in which replication and mutation rates are high enough to provide valuable data. On the other hand, experimental phylogenetics also provides insights on the main evolutionary processes acting on viral variability under different population dynamics. Our study with the foot-and-mouth disease virus (FMDV) strongly suggests that the phylogenetic reconstruction methods can infer erroneous phylogenies due to nucleotide convergences between isolates belonging to different experimental lineages. We also point out that the diverse evolutionary mechanisms acting in different experimental dynamics generate alterations and change the frequencies of genetic variants, which can lead to the misinterpretation of the real evolutionary history.  相似文献   

15.
M Neiman  A D Kay  A C Krist 《Heredity》2013,110(2):152-159
The predominance of sexual reproduction despite its costs indicates that sex provides substantial benefits, which are usually thought to derive from the direct genetic consequences of recombination and syngamy. While genetic benefits of sex are certainly important, sexual and asexual individuals, lineages, or populations may also differ in physiological and life history traits that could influence outcomes of competition between sexuals and asexuals across environmental gradients. Here, we address possible phenotypic costs of a very common correlate of asexuality, polyploidy. We suggest that polyploidy could confer resource costs related to the dietary phosphorus demands of nucleic acid production; such costs could facilitate the persistence of sex in situations where asexual taxa are of higher ploidy level and phosphorus availability limits important traits like growth and reproduction. We outline predictions regarding the distribution of diploid sexual and polyploid asexual taxa across biogeochemical gradients and provide suggestions for study systems and empirical approaches for testing elements of our hypothesis.  相似文献   

16.
Constraints have important effects on the evolution of life history strategies, but several difficulties have been encountered in determining constraints empirically. Here we investigate methods for measuring a specific type of constraint known as a trade-off. A trade-off between two traits implies a perfect negative correlation between the traits. Trade-offs may involve more than two traits, however, and pairs of traits involved in such a higher-dimensional trade-off may be positively correlated. If some of the traits involved in a trade-off are omitted from the experimental design, the trade-off may not even be detectable. Direct measures of trade-offs are thus complicated, and indirect means of identifying trade-offs may often provide the only feasible measures.  相似文献   

17.
Life cycles of birds and other vertebrates are composed of series of life history stages each with unique combinations of morphological, physiological and behavioral characteristics. For example, in the white-crowned sparrow, Zonotrichia leucophrys, the nonbreeding stage (winter), vernal migration, breeding, moult and autumn migration stages occur in a fixed and repeated sequence where each cycle is 1 year. The sequence of stages cannot be reversed. Transition from one life history stage to the next and the duration of each stage are dependent upon a combination of genetic factors and environmental cues. The latter include the annual change in photoperiod and the former may involve endogenous circannual rhythms. All vertebrates also express the emergency life history stage in response to perturbations of the environment that allow individuals to cope with the unpredictable. Each stage has a unique repertoire of sub-stages (physiological and behavioral, and to a lesser extent morphological), which can be expressed in any sequence or combination to give the state of the individual at any point in its life cycle. This state is presumably maximally adapted to the environmental conditions at that time. Although the sequence of life history stages appears to be innate, the rate of transition from stage to stage, and the expression of sub-stages can be modified by the local environmental factors and, particularly, by social cues. These environmental cues acting on the phenotype result in neuroendocrine and endocrine secretions that regulate development of the life history stage, its onset once mature capability has been attained, and then terminate it at the appropriate times. The environmental cues (from the physical and social environment) impart a strong experiential component. Because, there is a set number of life history stages and their sub-stages, there is a finite number of states that can be expressed in response to the environmental variation experienced by the individual. The more life history stages a phenotype expresses, the less flexibility is there in the overall timing of these stages owing to the time taken to develop one stage and terminate the last (about 1 month). However, many phenotypes have increased flexibility in their life cycles by overlapping some life history stages (i.e., with overlapping mature capability of two or perhaps even more stages). Another potential strategy is to dissociate some components of a life history stage so they are expressed at other times of year thus spreading out potential costs associated with that life history stage. Examples of both overlap and dissociation of life history stages are given including implications for hormonal control mechanisms.  相似文献   

18.
Statistical phylogeography   总被引:1,自引:0,他引:1  
While studies of phylogeography and speciation in the past have largely focused on the documentation or detection of significant patterns of population genetic structure, the emerging field of statistical phylogeography aims to infer the history and processes underlying that structure, and to provide objective, rather than ad hoc explanations. Methods for parameter estimation are now commonly used to make inferences about demographic past. Although these approaches are well developed statistically, they typically pay little attention to geographical history. In contrast, methods that seek to reconstruct phylogeographic history are able to consider many alternative geographical scenarios, but are primarily nonstatistical, making inferences about particular biological processes without explicit reference to stochastically derived expectations. We advocate the merging of these two traditions so that statistical phylogeographic methods can provide an accurate representation of the past, consider a diverse array of processes, and yet yield a statistical estimate of that history. We discuss various conceptual issues associated with statistical phylogeographic inferences, considering especially the stochasticity of population genetic processes and assessing the confidence of phylogeographic conclusions. To this end, we present some empirical examples that utilize a statistical phylogeographic approach, and then by contrasting results from a coalescent-based approach to those from Templeton's nested cladistic analysis (NCA), we illustrate the importance of assessing error. Because NCA does not assess error in its inferences about historical processes or contemporary gene flow, we performed a small-scale study using simulated data to examine how our conclusions might be affected by such unconsidered errors. NCA did not identify the processes used to simulate the data, confusing among deterministic processes and the stochastic sorting of gene lineages. There is as yet insufficient justification of NCA's ability to accurately infer or distinguish among alternative processes. We close with a discussion of some unresolved problems of current statistical phylogeographic methods to propose areas in need of future development.  相似文献   

19.
Telomeres have recently been suggested to play important role in ageing and are considered to be a reliable ageing biomarkers. The life history theory predicts that costs of reproduction should be expressed in terms of accelerated senescence, and some empirical studies do confirm such presumption. Thus, a link between reproductive effort and telomere dynamics should be anticipated. Recent studies have indeed demonstrated that reproduction may trigger telomere loss, but actual impact of reproductive effort has not received adequate attention in experimental studies. Here, we experimentally manipulated reproductive effort by increasing the brood size in the wild blue tit (Cyanistes caeruleus). We show that parents attending enlarged broods experienced larger yearly telomere decay in comparison to control birds attending unaltered broods. In addition, we demonstrate that the change in telomere length differs between sexes, but this effect was independent from our treatment. To our knowledge, this is the first experimental study in the wild revealing that telomere dynamics may be linked to reproductive effort. Thus, telomere shortening may constitute one of the potential proximate mechanisms mediating the costs of reproduction.  相似文献   

20.
Immune defence is hypothesized to be a trait that bears significant fitness costs as well as benefits in that mounting a defence depreciates the value of other life‐history traits. Thus the cost of mounting an immune response could affect the evolution of both the immune system and correlated life history traits. In this study we examined, by means of a diallel cross of four inbred lines, the genetic basis of two measures of immune function, metabolic rate and several traits in the sand cricket, Gryllus firmus. We specifically addressed the following questions: (1) is immune function determined primarily by genetic constitution or correlations with phenotypic traits that could reduce the effectiveness of the immune response; (2) do the two measures of immune function covary; (3) What are the contributions of additive, nonadditive and maternal effects to the immune function? As estimates of immune function, we used lytic activity and encapsulation rate. We found that inbred crickets were smaller than individuals from the crossed lines and took longer to develop. However, inbred lines did not differ from the crossed lines in immune function nor metabolic rates, suggesting that increased homozygosity has little or no effect on these traits in G. firmus. We found that both immune parameters showed significant genetic variation but no consistent relationships with the other phenotypic traits (metabolic rate, head width, body mass, development time and activity). There was significant additive genetic variation only in encapsulation rate, but, with the exception of the activity measure, significant nonadditive and reciprocal variances were found in all traits. Metabolic rate of crickets was heritable, but there was neither phenotypic nor genetic association between metabolic rate and the two parameters of immune function. Further, there was no correlation between these two measures. Females showed a higher encapsulation response than males, but there was no sex differences in lytic activity. Our study indicates that genetic variation in immune parameters can be a very significant contributor to phenotypic variation in immune function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号