首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike most pollinators, yucca moths are active pollinators of their host plants. Females lay their eggs in the flowers they pollinate, and their larvae feed solely on the resulting seeds. Previous evidence suggests that the yucca moth Tegeticula maculata avoids self-pollinating their host Yucca whipplei . Other yucca moths may self-pollinate more frequently. When pollinating, yucca moths are also reported to fly large distances between plants, bypassing neighbouring plants in the process. We experimentally verify the suggestion of Pellmyr et al . that yucca is more likely to retain fruits from self-pollination if overall fruit set is low. Thus, selection on moths to avoid self-pollinating should be density dependent. We found no evidence that mating with close neighbours resulted in inbreeding depression, thus the moth's long-distance flights between plants are yet to be explained.  相似文献   

2.
John F. Addicott 《Oecologia》1986,70(4):486-494
Summary Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3–28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6–6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0–43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0–13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6–19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.  相似文献   

3.
Althoff DM  Segraves KA  Sparks JP 《Oecologia》2004,140(2):321-327
Yucca moths are most well known for their obligate pollination mutualism with yuccas, where pollinator moths provide yuccas with pollen and, in exchange, the moth larvae feed on a subset of the developing yucca seeds. The pollinators, however, comprise only two of the three genera of yucca moths. Members of the third genus, Prodoxus, are the bogus yucca moths and are sister to the pollinator moths. Adult Prodoxus lack the specialized mouthparts used for pollination and the larvae feed on plant tissues other than seeds. Prodoxus larvae feed within the same plants as pollinator larvae and have the potential to influence yucca reproductive success directly by drawing resources away from flowers and fruit, or indirectly by modifying the costs of the mutualism with pollinators. We examined the interaction between the scape-feeding bogus yucca moth, Prodoxus decipiens, and one of its yucca hosts, Yucca filamentosa, by comparing female reproductive success of plants with and without moth larvae. We determined reproductive success by measuring a set of common reproductive traits such as flowering characteristics, seed set, and seed germination. In addition, we also quantified the percent total nitrogen in the seeds to determine whether the presence of larvae could potentially reduce seed quality. Flowering characteristics, seed set, and seed germination were not significantly different between plants with and without bogus yucca moth larvae. In contrast, the percent total nitrogen content of seeds was significantly lower in plants with P. decipiens larvae, and nitrogen content was negatively correlated with the number of larvae feeding within the inflorescence scape. Surveys of percent total nitrogen at three time periods during the flowering and fruiting of Y. filamentosa also showed that larval feeding decreased the amount of nitrogen in fruit tissue. Taken together, the results suggest that although P. decipiens influences nitrogen distribution in Y. filamentosa, this physiological effect does not appear to impact the female components of reproductive success.  相似文献   

4.
Chad J. Huth  Olle Pellmyr 《Oecologia》1999,119(4):593-599
Insect larvae such as those of yucca moths that feed on small, patchily distributed food items often face an elevated risk of intraspecific competition or cannibalism. For this reason, ovipositing females may assess a potential oviposition site for prior conspecific eggs or larvae before deciding whether to oviposit. Selective abortion of yucca flowers with high egg numbers prevents competition among larvae of the yucca moth Tegeticula yuccasella, but the same mechanism should select for female detection of and fewer ovipositions in flowers that already contain eggs. Female yucca moths presented with either virgin or previously visited flowers laid significantly fewer eggs in the latter flowers and pollinated them less often. A significant negative association was found between number of previous oviposition attempts in a flower and number of additional attempts by a female, suggesting a quantitative assessment of prior egg load, but the correlation coefficient was low. Factors contributing to this low correlation may include variation in signal quality, poor detection capability, uncertainty contributed by a variable oviposition attempt to egg ratio, and a variable response criterion based on recent female experience and physiological status. Females rationed their pollen by pollinating at decreasing frequency during a bout within a flower, and by depositing smaller pollen loads during later pollinations within a flower. Females ovipositing into a previously visited flower pollinated as frequently as would a first female for a given oviposition attempt within a flower, i.e., the probability of pollination after the nth oviposition was independent of whether it was performed by a first or a later moth. Experimental presentation of virgin flowers marked with a homogenate from female abdomens induced the same oviposition and pollination behavior as seen on previously visited flowers, suggesting the presence of a host-marking pheromone. Given that all eggs within a selectively aborted flower die, there may be selection among some yucca moths for providing a strong signal of floral egg status to conspecific females. Received: 1 December 1998 / Accepted: 7 February 1999  相似文献   

5.
In mutualisms, an underlying conflict of interests may select for defection from providing benefits. In the obligate mutualism between yuccas and yucca moths, where pollination service and seeds for pollinator larvae are traded, it has been suggested that some individuals in a population of Y. baccata may defect by preventing pollinator egg or larvae from development. We tested this hypothesis in Y. treculeana , another species suggested to contain cheater plants. Five specific predictions were tested during two years of study. A prediction that a surplus of plants without pollinator larvae should be present was met. Predicted existence of two distinct fruit morphs was rejected, and none of several highly variable morphological traits were linked to presence/absence of larvae. Predicted excess of intact seeds in the fruits of plants without larvae was not found; in fact, such plants produced fewer seeds, contrary to the hypothesis. A suggestion that inverse frequency-dependent fitness could explain the pattern was rejected. Contrary to prediction, distribution of larvae of a closely related cheater yucca moth was positively associated with pollinator larvae, even though it would not be affected by the proposed killing mechanism. The results together provide strong support against the existence of cheater plants in Y. treculeana .  相似文献   

6.
The interaction between yucca moths (Tegeticula spp., Incurvariidae) and yuccas (Yucca spp., Agavaceae) is an obligate pollination/seed predation mutualism in which adult female yucca moths pollinate yuccas, and yucca moth larvae feed on yucca seeds. In this paper we document that individual yucca moths, which are capable of acting as mutualists, facultatively cheat by ovipositing in yucca pistils without attempting to transfer pollen. Additionally, a high proportion of flowers are unlikely to receive pollen even when pollination is attempted, because many yucca moths carry little or no pollen. The probability of occurrence of non-mutualistic behaviour is not affected by the amount of pollen a moth carries: moths with full pollen loads are just as likely to act non-mutualistically as moths carrying little or no pollen. We propose four hypotheses that could explain facultative non-mutualistic behaviour in yucca moths.Present address: Department of Biology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada  相似文献   

7.
Yucca schidigera (Agavaceae) is one of the major commercial source of steroidal saponins. Two products of yucca are available on the market. These include dried and finely powdered logs (yucca powder) or mechanically pressed and thermally condensed juice (yucca extract). These products possess the GRAS label which allows their use as foaming agent in soft drink (root beer), pharmaceutical, cosmetic, food, and feeding-stuffs industries. The main application of yucca products is in animal nutrition, in particular as a feed additive to reduce ammonia and fecal odors in animal excreta. The positive effects of dietary supplementation with yucca products on the growth rates, feed efficiency, and health of livestock seem to be due not only to the saponin constituents but also to other constituents. These observations prompted us to investigate the phenolic constituents of Y. schidigera. This study led to the isolation of resveratrol, trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene, the sprirobiflavonoid larixinol along with novel phenolic derivatives with very unusual spirostructures, named yuccaols A–E and yuccaone A. Taking into account the multifunctional activities of resveratrol and the novelty of yuccaols A–E, structurally related to resveratrol, a program aimed to evaluate for yucca phenolics some of the activities exerted by resveratrol has been carried out. This review describes the chemistry of yucca saponins and phenolics, summarizes the biological activities of yucca products and constituents and gives an account on the actual and potential applications of yucca products.  相似文献   

8.
Ecological interactions between yucca moths (Tegeticula, Prodoxidae) and their host plants (Yucca, Agavaceae) are exemplary of obligate plant-pollinator mutualism and co-evolution. We describe a multiplex microsatellite DNA protocol for species identification and sibship assignment of sympatric larvae from Tegeticula synthetica and Tegeticula antithetica, pollinators of the Joshua tree (Yucca brevifolia). Bayesian clustering provides correct diagnosis of species in 100% of adult moths, with unambiguous identification of sympatric larvae. Sibship assignments show that larvae within a single fruit are more likely to be full-sibs or half-sibs than larvae from different fruit, consistent with the hypothesis that larval clutches are predominantly the progeny of an individual female.  相似文献   

9.
The interaction between yucca plants and yucca moths has been one of the focal model systems investigated in the study of pollination mutualism and coevolution, especially in terms of understanding the prevention of overexploitation by mutualist partners. Yuccas have the ability to assess the number of eggs placed by pollinators into their ovaries, and can preferentially abort those flowers that would have many moth larvae consuming yucca seeds. Previous phylogenetic research identified a rapid radiation of moth species that corresponded with shifts in the interaction with their host plants. These shifts led to the evolution of moth species that circumvent the egg detection method used by yuccas to limit seed damage. In particular, some pollinator species deposit their eggs so that they are undetectable by the plants, whereas other species are ‘cheaters’ that have lost the ability to pollinate, yet deposit eggs into developing fruit rather than flowers. The evolution of these new species happened so quickly that the phylogeny of the moths has remained unresolved despite repeated attempts with standard Sanger sequencing of mtDNA loci and AFLP marker generation. Here, we use extensive analyses of RAD‐seq data to determine the phylogenetic relationships among yucca moth species. The results provide a robust phylogenetic framework that identifies the evolutionary relationships among shifts in egg‐laying strategies, as well as determining the closest pollinating relatives to the cheater species. Based on the obtained phylogeny, a shift in egg‐laying strategy that avoided the overexploitation regulatory mechanism used by yucca plants was a precursor for the evolution of two species with cheating behaviour.  相似文献   

10.
The interaction between yuccas and yucca moths has been central to understanding the origin and loss of obligate mutualism and mutualism reversal. Previous systematic research using mtDNA sequence data and characters associated with genitalic morphology revealed that a widespread pollinator species in the genus Tegeticula was in fact a complex of pollinator species that differed in host use and the placement of eggs into yucca flowers. Within this mutualistic clade two nonpollinating "cheater" species evolved. Cheaters feed on yucca seeds but lack the tentacular mouthparts necessary for yucca pollination. Previous work suggested that the species complex formed via a rapid radiation within the last several million years. In this study, we use an expanded mtDNA sequence data set and AFLP markers to examine the phylogenetic relationships among this rapidly diverging clade of moths and compare these relationships to patterns in genitalic morphology. Topologies obtained from analyses of the mtDNA and AFLP data differed significantly. Both data sets, however, corroborated the hypothesis of a rapid species radiation and suggested that there were likely two independent species radiations. Morphological analyses based on oviposition habit produced species groupings more similar to the AFLP topology than the mtDNA topology and suggested the two radiations coincided with differences in oviposition habit. The evolution of cheating was reaffirmed to have evolved twice and the closest pollinating relative for one cheater species was identified by both mtDNA and AFLP markers. For the other cheater species, however, the closest pollinating relative remains ambiguous, and mtDNA, AFLP, and morphological data suggest this cheater species may be diverged based on host use. Much of the divergence in the species complex can be explained by geographic isolation associated with the evolution of two oviposition habits.  相似文献   

11.
The pollination mutualism between yucca moths and yuccas highlights the potential importance of host plant specificity in insect diversification. Historically, one pollinator moth species, Tegeticula yuccasella, was believed to pollinate most yuccas. Recent phylogenetic studies have revealed that it is a complex of at least 13 distinct species, eight of which are specific to one yucca species. Moths in the closely related genus Prodoxus also specialize on yuccas, but they do not pollinate and their larvae feed on different plant parts. Previous research demonstrated that the geographically widespread Prodoxus quinquepunctellus can rapidly specialize to its host plants and may harbor hidden species diversity. We examined the phylogeographic structure of P. quinquepunctellus across its range to compare patterns of diversification with six coexisting pollinator yucca moth species. Morphometric and mtDNA cytochrome oxidase I sequence data indicated that P. quinquepunctellus as currently described contains two species. There was a deep division between moth populations in the eastern and the western United States, with limited sympatry in central Texas; these clades are considered separate species and are redescribed as P. decipiens and P. quinquepunctellus (sensu stricto), respectively. Sequence data also showed a lesser division within P. quinquepunctellus s.s. between the western populations on the Colorado Plateau and those elsewhere. The divergence among the three emerging lineages corresponded with major biogeographic provinces, whereas AMOVA indicated that host plant specialization has been relatively unimportant in diversification. In comparison, the six pollinator species comprise three lineages, one eastern and two western. A pollinator species endemic to the Colorado Plateau has evolved in both of the western lineages. The east-west division and the separate evolution of two Colorado Plateau pollinator species suggest that similar biogeographic factors have influenced diversification in both Tegeticula and Prodoxus. For the pollinators, however, each lineage has produced a monophagous species, a pattern not seen in P. quinquepunctellus.  相似文献   

12.
Bao  & Addicott 《Ecology letters》1998,1(3):155-159
Yucca baccata cheats in its obligate pollination/seed predation mutualism with yucca moths. Although all individuals use the pollination services of yucca moths, many individuals do not reciprocate in sustaining yucca moth larvae. Cheating is associated with the morphology of Y. baccata pistils. In Y. baccata , the apex of the ovary contains only inviable ovules, and there are two distinct flower types, one of which has twice as many potentially viable ovules as the other. Because yucca moths oviposit at the apex of Y. baccata ovaries, larvae in flowers with few viable ovules fail to encounter viable ovules and therefore perish. Inflorescences generally have just one flower type, implying that some individuals cheat whereas others maintain the yucca moth population. Our most surprising observation, however, is that although the proportion of cheaters should be low, over 70% of Y. baccata individuals cheat. We hypothesize that both density- and frequency-dependent processes maintain a balance of cheaters and noncheaters in this system.  相似文献   

13.
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

14.
Costs of two non-mutualistic species in a yucca/yucca moth mutualism   总被引:1,自引:0,他引:1  
Mutualisms often involve significant costs for participants. Costs are inflicted by mutualists themselves, as well as by associated, non-mutualistic species. These costs are rarely quantified, however, particularly the ones extrinsic to the pairwise interaction. We compare costs inflicted by an obligate mutualist pollinator and two common exploiters of an Arizona yucca over a 2-year period. The magnitude of seed damage from seed and fruit-feeding beetle larvae (Carpophilus longus, Nitidulidae) was similar to damage from the seed-eating larvae of Yucca schottii's pollinator moth Tegeticula yuccasella (Prodoxidae), averaging about 15 seeds destroyed per fruit in each case. The two seed predators usually fed within the same fruits, although rarely side by side. In contrast, the presence of fruit-galling moth larvae (Prodoxusy-inversus, Prodoxidae) appeared to benefit the yucca: individual Tegeticula destroyed only half as many seeds in galled fruits as they did in ungalled fruits. We discuss three general implications of these results. Firstly, the costs of non-mutualists to the two mutualistic partners are not necessarily parallel. Secondly, measurable costs of non-mutualists do not necessarily translate into an impact on the success of the mutualism itself, because they may be incurred after mutualistic activities take place. Finally, the costs of mutualists to each other can differ substantially depending on the presence or absence of non-mutualistic species. Received:17 July 1996 / Accepted:10 June 1997  相似文献   

15.
Tadpoles are often considered to be predators of mosquito larvae and are therefore beneficial for the control of certain disease vectors. Nevertheless, only a few species have actually been recorded to prey on mosquito larvae. The mosquito larvae predation rates of tadpoles of three common Thai anuran species (Bufo melanostictus, Kaloula pulchra and Hylarana raniceps) were experimentally tested. Tadpoles in varying developmental stages were used to assess a size/age effect on the predation rate. In addition, different instars of Culex quinquefasciatus were used in order to assess a prey size effect on the predation rates. All three species failed to show any evidence of mosquito larvae predation. Neither small nor large tadpoles fed on mosquito larvae. Prey size also did not affect predation. Although tadpoles do not feed on mosquito larvae, there may be other direct or indirect inter‐specific interactions that adversely impact the development of larvae in shared habitats with tadpoles.  相似文献   

16.
Abstract.  1. Although the moth–yucca mutualism is often studied as a pairwise interaction, yucca plants are also the sole host for a variety of other visitors. One of these additional visitors is a stem-boring moth, Prodoxus quinquepunctellus.
2. In this study, it is shown how the reproductive success of Prodoxus indirectly depends on the interactions between yuccas and their pollinators ( Tegeticula , Prodoxidae) as well as the indirect effects of ants and aphids.
3. Aggressive wood ants foraging on yuccas will attack adult Prodoxus moths while attempting to oviposit. This reduces the number of eggs laid in yucca stalks, leading to fewer larvae feeding in the stalks.
4. Once in the stalk, the survival of Prodoxus eggs/larvae depends upon the rate at which the flowering stalks dry out during fruit maturation. Portions of the stalk above the highest fruit dry out quickly and survivorship approaches zero in these dry sections, while larvae in green sections of the flowering stalk have significantly higher survival rates. The presence of aphids feeding on the stalk slows down the rate of stalk drying and could lead to increased survival of Prodoxus larvae.
5. Overall, ants have strong indirect effects on P. quinquepunctellus by controlling how many eggs are laid in the stalk and by influencing the distribution of aphids. However, it is primarily the presence and position of the fruit that can affect larval survivorship, and fruit position is a function of pollinator visits and resource limitation. These complex interactions illustrate the importance of studying the yucca–moth mutualism in a community context.  相似文献   

17.
Previous studies have demonstrated that the genome of Onchocerca volvulus contains a variable tandemly repeated DNA sequence family with a unit length of 150 bp. The variability of the 150-bp family has been exploited to develop O. volvulus strain and species specific DNA probes. Application of these DNA probes to the study of the epidemiologically most significant life cycle stages of the parasite has been confounded by several obstacles. These include the relative insensitivity of some of the DNA probes and the difficulty in releasing genomic DNA from infective larvae and skin microfilariae in a form that may be directly detected by hybridization to the probes. DNA sequence comparison of 18 known examples of the 150-bp repeat has been used to develop two populations of degenerate oligonucleotides. These oligonucleotides have been shown to support the amplification of the 150-bp repeat family from Onchocerca DNA, using the polymerase chain reaction. Both strain and species specific members of the repeat family are faithfully amplified, allowing characterization of a parasite on the basis of hybridization of the PCR amplification products to the previously developed DNA probes. This method is shown to be applicable to all diagnostically important forms of the parasite, including adults, infective larvae, and skin microfilariae. In addition, the method is capable of detecting O. volvulus infective larvae directly in extracts of blackfly vectors.  相似文献   

18.
The larvae of Agonopterix ulicetella (Stainton) (Lepidoptera: Oecophoridae) feed on the green foliage of gorse, Ulex europaeus L., and this insect is a potential biological control agent of this weed in New Zealand. The biology of the insect is described and its known parasitoids are listed. In experiments to measure oviposition preference, 46 plant species from 11 families were exposed to adult moths. Gorse was highly preferred over other plants, and there was no oviposition on 33 species tested. Eggs were found on Spartium junceum, Chamaecytisus palmensis, Lupinus arboreus, L. polyphyllus, Genista tinctoria and occasionally on eight other species. In experiments to measure the ability of first instar larvae to feed on 70 test plant species, 59 did not support development beyond the first instar and only seven species supported development to the pupal stage. These results show that under laboratory conditions this moth can lay its eggs and complete development on five members of the tribe Genisteae other than gorse. A. ulicetella was released in New Zealand in 1990 but has not yet established.  相似文献   

19.
Evolutionary loss of the requirement for feeding in larvae of marine invertebrates is often followed by loss of structures involved in capturing and digesting food. Studies of echinoderms suggest that larval form evolves rapidly in response to loss of the requirement for feeding, but a lack of data from other taxa makes it difficult to assess the generality of this result. I show that many members of a large clade of annelids, the Sabellidae, retain ancestral systems for particle capture despite loss of the need and ability to feed. In at least one species, Schizobranchia insignis, an opposed-band system of prototrochal, food-groove, and metatrochal ciliary bands can concentrate suspended particles and transport them to the mouth, but captured particles are invariably rejected because larvae lack a functional gut. The persistence of particle capture systems in larvae of sabellids suggests that they have lost larval feeding very recently, that opposed bands are inexpensive to construct and operate, or that opposed bands have some alternative function. These observations also suggest a hypothesis on how the ability to feed is lost in larvae of annelids and other spiralians following increases in egg size.  相似文献   

20.
Many herbivorous insects feed on plant tissues as larvae but use other resources as adults. Adult nectar feeding is an important component of the diet of many adult herbivores, but few studies have compared adult and larval feeding for broad groups of insects. We compiled a data set of larval host use and adult nectar sources for 995 butterfly and moth species (Lepidoptera) in central Europe. Using a phylogenetic generalized least squares approach, we found that those Lepidoptera that fed on a wide range of plant species as larvae were also nectar feeding on a wide range of plant species as adults. Lepidoptera that lack functional mouthparts as adults used more plant species as larval hosts, on average, than did Lepidoptera with adult mouthparts. We found that 54% of Lepidoptera include their larval host as a nectar source. By creating null models that described the similarity between larval and adult nectar sources, we furthermore showed that Lepidoptera nectar feed on their larval host more than would be expected if they fed at random on available nectar sources. Despite nutritional differences between plant tissue and nectar, we show that there are similarities between adult and larval feeding in Lepidoptera. This suggests that either behavioral or digestive constraints are retained throughout the life cycle of holometabolous herbivores, which affects host breadth and identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号