首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Arsbidopsis COP1 (Constitutive Photomorphogenic 1) defines a key repressor of photomorphogenesis in darkness by acting as an E3 ubiquitin Iigase in the nucleus, and is responsible for the targeted degradation of a number of photomorphogenesis-promoting factors, including phyA, HY5, LAF1, and HFR1. Light activation of multiple classes of photoreceptors (including both phytochromes and cryptochromes) inactivates COP1 and reduces its nuclear abundance, allowing the accumulation of these positively acting light signaling intermediates to promote photomorphogenic development. Recent studies suggest that Arabidopsis COP1 teams up with a family of SPA proteins (SPA1-SPA4) to form the physiologically active COP1-SPA E3 ubiquitin ligase complexes. These COP1-SPA complexes play overlapping and distinct functions in regulating seedling photomorphogenesis under different light conditions and adult plant growth. Further, the COP1-SPA complexes act In concert at a biochemical level with the CDD (COP10, DET1, and DDB1) complex and COP9 signalosome (CSN) to orchestrate the repression of photomorphogenesis.  相似文献   

3.
4.
The Arabidopsis thaliana proteins suppressor of phytochrome A-105 1 (SPA1), SPA3, and SPA4 of the four-member SPA1 protein family have been shown to repress photomorphogenesis in light-grown seedlings. Here, we demonstrate that spa quadruple mutant seedlings with defects in SPA1, SPA2, SPA3, and SPA4 undergo strong constitutive photomorphogenesis in the dark. Consistent with this finding, adult spa quadruple mutants are extremely small and dwarfed. These extreme phenotypes are only observed when all SPA genes are mutated, indicating functional redundancy among SPA genes. Differential contributions of individual SPA genes were revealed by analysis of spa double and triple mutant genotypes. SPA1 and SPA2 predominate in dark-grown seedlings, whereas SPA3 and SPA4 prevalently regulate the elongation growth in adult plants. Further analysis of SPA2 function indicated that SPA2 is a potent repressor of photomorphogenesis only in the dark but not in the light. The SPA2 protein is constitutively nuclear localized in planta and can physically interact with the repressor COP1. Epistasis analysis between spa2 and cop1 mutations provides strong genetic support for a biological significance of a COP1-SPA2 interaction in the plant. Taken together, our results have identified a new family of proteins that is essential for suppression of photomorphogenesis in darkness.  相似文献   

5.
Arabidopsis (Arabidopsis thaliana) CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and members of the SUPPRESSOR OF PHYTOCHROMEA-105 (SPA) protein family form an E3 ubiquitin ligase that suppresses light signaling in darkness by polyubiquitinating positive regulators of the light response. COP1/SPA is inactivated by light to allow photomorphogenesis to proceed. Mechanisms of inactivation include light-induced degradation of SPA1 and, in particular, SPA2, corresponding to a particularly efficient inactivation of COP1/SPA2 by light. Here, we show that SPA3 and SPA4 proteins are stable in the light, indicating that light-induced destabilization is specific to SPA1 and SPA2, possibly related to the predominant function of SPA1 and SPA2 in dark-grown etiolating seedlings. SPA2 degradation involves cullin and the COP10-DEETIOLATED-DAMAGED-DNA BINDING PROTEIN (DDB1) CDD complex, besides COP1. Consistent with this finding, light-induced SPA2 degradation required the DDB1-interacting Trp-Asp (WD)-repeat domain of SPA2. Deletion of the N-terminus of SPA2 containing the kinase domain led to strong stabilization of SPA2 in darkness and fully abolished light-induced degradation of SPA2. This prevented seedling de-etiolation even in very strong far-red and blue light and reduced de-etiolation in red light, indicating destabilization of SPA2 through its N-terminal domain is essential for light response. SPA2 is exclusively destabilized by phytochrome A in far-red and blue light. However, deletion of the N-terminal domain of SPA2 did not abolish SPA2-phytochrome A interaction in yeast nor in vivo. Our domain mapping suggests there are two SPA2-phytochrome A interacting domains, the N-terminal domain and the WD-repeat domain. Conferring a light-induced SPA2-phyA interaction only via the WD-repeat domain may thus not lead to COP1/SPA2 inactivation.

Light inactivates the COP1/SPA2 repressor of photomorphogenesis through cullin- and CDD-mediated degradation of SPA2, whereas the family members SPA3 and SPA4 are stable in the light.  相似文献   

6.
The COP1/SPA complex is an E3 ubiquitin ligase that acts as a key repressor of photomorphogenesis in dark‐grown plants. While both COP1 and the four SPA proteins contain coiled‐coil and WD‐repeat domains, SPA proteins differ from COP1 in carrying an N‐terminal kinase‐like domain that is not present in COP1. Here, we have analyzed the effects of deletions and missense mutations in the N‐terminus of SPA1 when expressed in a spa quadruple mutant background devoid of any other SPA proteins. Deletion of the large N‐terminus of SPA1 severely impaired SPA1 activity in transgenic plants with respect to seedling etiolation, leaf expansion and flowering time. This ΔN SPA1 protein showed a strongly reduced affinity for COP1 in vitro and in vivo, indicating that the N‐terminus contributes to COP1/SPA complex formation. Deletion of only the highly conserved 95 amino acids of the kinase‐like domain did not severely affect SPA1 function nor interactions with COP1 or cryptochromes. In contrast, missense mutations in this part of the kinase‐like domain severely abrogated SPA1 function, suggesting an overriding negative effect of these mutations on SPA1 activity. We therefore hypothesize that the sequence of the kinase‐like domain has been conserved during evolution because it carries structural information important for the activity of SPA1 in darkness. The N‐terminus of SPA1 was not essential for light responsiveness of seedlings, suggesting that photoreceptors can inhibit the COP1/SPA complex in the absence of the SPA1 N‐terminal domain. Together, these results uncover an important, but complex role of the SPA1 N‐terminus in the suppression of photomorphogenesis.  相似文献   

7.
Suppressor of phyA-105 (SPA1) is a phytochrome A-specific signaling intermediate that acts as a light-dependent repressor of photomorphogenesis in Arabidopsis seedlings. SPA1 is part of a small gene family comprising three genes: SPA1-related 2 (SPA2), SPA1-related 3 (SPA3), and SPA1-related 4 (SPA4). Here, we investigate the functions of SPA3 and SPA4, two very closely related genes coding for proteins with 74% identical amino acids. Seedlings with mutations in SPA3 or SPA4 exhibit enhanced photomorphogenesis in the light, but show no phenotype in darkness. While there are small differences between the effects of spa3 and spa4 mutations, it is apparent that SPA3 and SPA4 function to inhibit light responses in continuous far-red, red, and blue light. Phytochrome A is necessary for all aspects of the spa4 mutant phenotype, suggesting that SPA4, like SPA1, acts specifically in phytochrome A signaling. Enhanced photoresponsiveness of spa3 mutants is also fully dependent on phytochrome A in far-red and blue light, but not in red light. Hence, SPA3 function in red light may be dependent on other phytochromes in addition to phytochrome A. Using yeast two-hybrid and in vitro interaction assays, we further show that SPA3 as well as SPA4 can physically interact with the constitutive repressor of light signaling COP1. Deletion analyses suggest that SPA3 and SPA4, like SPA1, bind to the coiled-coil domain of COP1. Taken together, our results have identified two new loci coding for negative regulators that may be involved in fine tuning of light responses by interacting with COP1.  相似文献   

8.
9.
10.
11.
12.
Eleven recessive mutant loci define the class of cop / det / fus mutants of Arabidopsis. The cop / det / fus mutants mimic the phenotype of light-grown seedlings when grown in the dark. At least four cop / det / fus mutants carry mutations in subunits of the COP9 signalosome, a multiprotein complex paralogous to the 'lid' subcomplex of the 26S proteasome. COP1, another COP/DET/FUS protein, is itself not a subunit of the COP9 signalosome. In the dark, COP1 accumulates in the nucleus where it is required for the degradation of the HY5 protein, a positive regulator of photomorphogenesis. In the light, COP1 is excluded from the nucleus and the constitutively nuclear HY5 protein can accumulate. Nuclear accumulation of COP1 and degradation of HY5 are impaired in the cop / det / fus mutants that carry mutations in subunits of the COP9 signalosome. Although the cellular function of the COP/DET/FUS proteins is not yet well understood, taken together the current findings suggest that the COP/DET/FUS proteins repress photomorphogenesis in the dark by mediating specific protein degradation.  相似文献   

13.
Arabidopsis seedlings are genetically endowed with the capability to follow two distinct developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. The regulatory protein CONSTITUTIVE PHOTO-MORPHOGENIC1 (COP1) has been postulated to act as a repressor of photomorphogenesis in the dark because loss-of-function mutations of COP1 result in dark-grown seedlings phenocopying the light-grown wild-type seedlings. In this study, we tested this working model by overexpressing COP1 in the plant and examining its inhibitory effects on photomorphogenic development. Stable transgenic Arabidopsis lines overexpressing COP1 were generated through Agrobacterium-mediated transformation. Overexpression was achieved using either the strong cauliflower mosaic virus 35S RNA promoter or additional copies of the wild-type gene. Analysis of these transgenic lines demonstrated that higher levels of COP1 can inhibit aspects of photomorphogenic seedling development mediated by either phytochromes or a blue light receptor, and the extent of inhibition correlated quantitatively with the vivo COP1 levels. This result provides direct evidence that COP1 acts as a molecular repressor of photomorphogenic development and that multiple photoreceptors can independently mediate the light inactivation of COP1. It also suggests that a controlled inactivation of COP1 may provide a basis for the ability of plants to respond quantitatively to changing light signals, such as fluence rate and photoperiod.  相似文献   

14.
SPA1 is a phytochrome A (phyA)-specific signaling intermediate that acts as a light-dependent repressor of photomorphogenesis in Arabidopsis seedlings. It contains a WD-repeat domain that shows high sequence similarity to the WD-repeat region of the constitutive repressor of light signaling, COP1. Here, using yeast two-hybrid and in vitro interaction assays, we show that SPA1 strongly and selectively binds to COP1. Domain mapping studies indicate that the putative coiled-coil domain of SPA1 is necessary and sufficient for binding to COP1. Conversely, similar deletion analyses of the COP1 protein suggest that SPA1 interacts with the presumed coiled-coil domain of COP1. To further investigate SPA1 function in the phyA signaling pathway, we tested whether SPA1, like COP1, mediates changes in gene expression in response to light. We show that spa1 mutations increase the photoresponsiveness of certain light-regulated genes within 2 h of light treatment. Taken together, the results suggest that SPA1 may function to link the phytochrome A-specific branch of the light signaling pathway to COP1. Hence, our data provide molecular support for the hypothesis that COP1 is a convergence point for upstream signaling pathways dedicated to individual photoreceptors.  相似文献   

15.
16.
17.
Markus Nixdorf  Ute Hoecker 《Planta》2010,231(4):825-833
The COP1/SPA complex and DET1 function to suppress photomorphogenesis in dark-grown Arabidopsis seedlings. Additionally, they inhibit flowering under non-inductive short-day conditions. The COP1/SPA complex and DET1, as part of the CDD complex, represent distinct high-molecular-weight complexes in Arabidopsis. Here, we provide genetic evidence that these complexes co-act in regulating plant development. We report the isolation of a spa1 enhancer mutation that represents a novel, very weak allele of det1. This det1 esp1 mutation caused no detectable mutant phenotype in the presence of wild-type SPA1, but showed strongly synergistic genetic interaction with the spa1 mutation in the control of seedling photomorphogenesis, anthocyanin accumulation, plant size as well as flowering time. On the biochemical level, the det1 esp1 spa1 double mutant showed higher HY5 protein levels than either single mutant or the wild type. The genetic interaction of spa1 and det1 mutations was further confirmed in the spa1 det1-1 double mutant which carries a strong allele of det1. Taken together, these results show that SPA1 and DET1 act together to control photomorphogenesis throughout plant development. Hence, this suggests that COP1/SPA complexes and the CDD complex co-act in controlling the protein stability of COP1/SPA target proteins.  相似文献   

18.
Arabidopsis COP1 is a negative regulator of photomorphogenesis, which targets HY5, a positive regulator of photomorphogenesis, for degradation via the proteasome pathway in the absence of light. COP1 and its interactive partner CIP8 both possess RING finger motifs, characteristic of some E3 ubiquitin ligases. Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in vitro. CIP8 exhibits a strong interaction with the E2 enzyme AtUBC8 through its N-terminal domain. Phosphorylation of HY5 by casein kinase II requires the beta subunit 2, but does not affect HY5's susceptibility to ubiquitination. The RING domain of CIP8 is required but is not sufficient for ubiquitin ligase activity. Although the RING domain of CIP8 interacts with the RING domain of COP1, addition of recombinant COP1 fails to affect CIP8's ubiquitin ligase activity towards HY5 in vitro. However, recombinant COP1 can pull-down native CIP8 from the extract of dark-grown seedlings, but not from the extract of light-grown seedlings in a column-binding assay, implying a requirement for light-regulated modification in vivo. Our data suggest that CIP8 can form a minimal ubiquitin ligase in co-operation with the E2 enzyme AtUBC8. It is possible that the AtUBC8-CIP8 module might interact with COP1 in vivo, thereby participating in proteasome-mediated degradation of HY5.  相似文献   

19.
Dark-grown transgenic Arabidopsis seedlings expressing the C-terminal domains (CCT) of the cryptochrome (CRY) blue light photoreceptors exhibit features that are normally associated only with light-grown seedlings, indicating that the signaling mechanism of Arabidopsis CRY is mediated through CCT. The phenotypic properties mediated by CCT are remarkably similar to those of the constitutive photomorphogenic1 (cop1) mutants. Here we show that Arabidopsis cryptochrome 1 (CRY1) and its C-terminal domain (CCT1) interacted strongly with the COP1 protein. Coimmunoprecipitation studies showed that CRY1 was bound to COP1 in extracts from both dark- and light-grown Arabidopsis. An interaction also was observed between the C-terminal domain of Arabidopsis phytochrome B and COP1, suggesting that phytochrome signaling also proceeds, at least in part, through direct interaction with COP1. These findings give new insight into the initial step in light signaling in Arabidopsis, providing a molecular link between the blue light receptor, CRY1, and COP1, a negative regulator of photomorphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号