首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
alphaA- and alphaB-crystallins are small heat shock proteins and molecular chaperones that are known to prevent non-specific aggregation of denaturing proteins. Recent work indicates that alphaA-/- lens epithelial cells grow at a slower rate than wild-type cells, and cultured alphaB-/- cells demonstrate increased hyperproliferation and genomic instability, suggesting that these proteins may exert a direct effect on the cell cycle kinetics, and influence cell proliferation. However, the cell cycle parameters of alphaA/alphaBKO (double knockout) cells have not been analyzed. Here we investigate the cell cycle kinetics of synchronized mouse lens epithelial cultures derived from wild-type and alphaA/alphaB double knockout (alphaA/alphaBKO) mice using BrdU labeling of proliferating cells, and flow cytometric analysis. We also provide data on the changing pattern of expression of HSP25, a small heat shock protein in alphaA/alphaBKO and wild-type cells during the cell cycle. Using serum starvation to synchronize cells in the quiescent G0 phase, and restimulation with serum followed by BrdU labeling and flow cytometry, the data indicated that as compared to wild-type cells, a <50% smaller fraction of the alphaA/alphaBKO cells entered the DNA synthetic S phase of the cell cycle. Furthermore, there was a delay in cell cycle transit through S phase in alphaA/alphaBKO cells, suggesting that although capable of entering S phase, the alphaA/alphaBKO cells are blocked in G1 phase, and are delayed in their cell cycle progression. Immunoblot analysis with antibodies to the small heat shock protein HSP25 indicated that although HSP25 increased in G1 phase of wild-type cells, and remained elevated on further progression through the cell cycle, HSP25 accumulation was delayed to S phase in alphaA/alphaBKO cells. These data can be interpreted to indicate that mouse lens epithelial cell progression through the cell cycle is significantly affected by expression of alphaA and alphaB-crystallin.  相似文献   

3.

Background

Cleavage of 11 (αA162), 5 (αA168) and 1 (αA172) residues from the C-terminus of αA-crystallin creates structurally and functionally different proteins. The formation of these post-translationally modified αA-crystallins is enhanced in diabetes. In the present study, the fate of the truncated αA-crystallins expressed in living mammalian cells in the presence and absence of native αA- or αB-crystallin has been studied by laser scanning confocal microscopy (LSM).

Methodology/Principal Findings

YFP tagged αAwt, αA162, αA168 and αA172, were individually transfected or co-transfected with CFP tagged αAwt or αBwt, expressed in HeLa cells and studied by LSM. Difference in protein aggregation was not caused by different level of α-crystallin expression because Western blotting results showed nearly same level of expression of the various α-crystallins. The FRET-acceptor photo-bleaching protocol was followed to study in situ protein-protein interaction. αA172 interacted with αAwt and αBwt better than αA168 and αA162, interaction of αBwt being two-fold stronger than that of αAwt. Furthermore, aggresomes were detected in cells individually expressing αA162 and αA168 constructs and co-expression with αBwt significantly sequestered the aggresomes. There was no sequestration of aggresomes with αAwt co-expression with the truncated constructs, αA162 and αA168. Double immunocytochemistry technique was used for co-localization of γ-tubulin with αA-crystallin to demonstrate the perinuclear aggregates were aggresomes.

Conclusions/Significance

αA172 showed the strongest interaction with both αAwt and αBwt. Native αB-crystallin provided protection to partially unfolded truncated αA-crystallins whereas native αA-crystallin did not. Aggresomes were detected in cells expressing αA162 and αA168 and αBwt co-expression with these constructs diminished the aggresome formation. Co-localization of γ-tubulin in perinuclear aggregates validates for aggresomes.  相似文献   

4.
5.
The mitotic spindle checkpoint and apoptosis in response to nocodazole, a microtubule-disrupting agent, were investigated in the -particle transformed human bronchial epithelial cell lines BERP35T1, BERP35T4 and the parental BEP2D cell line. When treated with 0.2 g/ml of nocodazole, BEP2D and BERP35T1 cells were efficiently arrested in the mitotic phase, whilst BERP35T4, a transformed cell line showing chromosomal instability, failed to be arrested as evidenced by a low G2/M fraction. BERP35T4 cells also showed a higher proportion of aneuploids when treated with nocodazole or not. Thus, the BERP35T4 cell line has a defect in spindle checkpoint function. The extent of apoptosis induced by nocodazole (0.3 g/ml) was significantly higher (2-fold to 2.5-fold) in BEP2D cells than in the two transformed cell lines. Furthermore, the induced apoptosis was found to occur predominantly before mitotic division in BEP2D cells. In BERP35T4 cells, however, 50% of induced apoptosis occurred before mitotic division and 50% occurred after division in binucleated cells when co-treated with cytochalasin B. The 5-CpG island of the Chfr gene, a mitotic checkpoint gene that functions in entry into metaphase, was found to be methylated in BERP35T4 cells but not in BEP2D cells. Consistent with methylation, the expression of the Chfr gene was markedly suppressed in BERP35T4 cells. Our results suggest that the impaired spindle checkpoint and abnormal apoptotic response may be related to the oncogenic progression of human bronchial epithelial cells initiated by exposure to -particles.  相似文献   

6.
Age-related macular degeneration (AMD), a neurodegenerative and vascular retinal disease, is the leading cause of blindness in the developed world. Accumulating evidence suggests that alterations in the expression of a small heat shock protein (αB-crystallin) are involved in the pathogeneses of AMD. Here we demonstrate that senescence-accelerated OXYS rats—an animal model of the dry form of AMD—develop spontaneous retinopathy against the background of reduced expression of αB-crystallin in the retina at the early preclinical stages of retinopathy (age 20 days) as well as at 4 and 24 months of age, during the progressive stage of the disease. The level of αA-crystallin expression in the retina of OXYS rats at all the ages examined was no different from that in disease-free Wistar rats. Treatment with the mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) from 1.5 to 4 months of age, 250 nmol/kg, increased the level of αB-crystallin expression in the retina of OXYS rats. SkQ1 slowed the development of retinopathy and reduced histological aberrations in retinal pigment epithelium cells. SkQ1 also attenuated neurodegenerative changes in the photoreceptors and facilitated circulation in choroid blood vessels in the retina of OXYS rats; this improvement was probably linked with the restoration of αB-crystallin expression.  相似文献   

7.
A good correlation between the expression of mucin1 (MUC1) and T antigen was found in breast cancer tumors and breast cancer cell lines, especially after treatment with neuraminidase. The association between the appearance of T antigen and the overexpression of MUC1 was further confirmed by transfecting MDA-MB-231 cells and murine 4T1 mammary carcinoma cells with cDNA for MUC1 and using an RNAi approach to inhibit the expression of MUC1 gene in T47D cells. Furthermore, we discovered that in 4T1 cells which express the sialyl Le(X) antigen, overexpression of MUC1 caused not only appearance of T antigen, but also loss of the sialyl Le(X) structure. As the observed changes in O-glycan synthesis can be associated with changes in the expression of specific glycosyltransferases, core 1 β1,3-galactosyltransferase, core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT1) and β-galactoside α2,3-sialyltransferase (ST3Gal I), we studied their expression in parental, vector-transfected and MUC1-transfected MDA-MB-231 and 4T1 cells as well as T47D cells transduced with small hairpin RNA targeted MUC1 mRNA. It was found that the expression of C2GnT1 and ST3Gal I is highly decreased in MUC1-expressing MDA-MB-231 and 4T1 cells and increased in T47D cells with suppressed expression of MUC1. Therefore, we found that changes in the structure of O-linked oligosaccharides, resulting in the occurrence of T antigen, are at least partially associated with MUC1 overexpression which down-regulates the expression of C2GnT1 and ST3Gal I. We showed also that the overexpression of MUC1 in 4T1 cells changes their adhesive properties, as MUC1-expressing cells do not adhere to E-selectin, but bind galectin-3.  相似文献   

8.
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Among the HSPs, special attention has been devoted to the mutations affecting the function of the αB-crystallin (HSPB5), a small heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally, pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders.  相似文献   

9.
10.

[Purpose]

αB-crystallin is a small heat shock protein that acts as a molecular chaperone under various stress conditions. Microtubules, which consist of tubulin, are related to maintain the intracellular organelles and cellular morphology. These two proteins have been shown to be related to the properties of different types of myofibers based on their contractile properties. The response of these proteins during muscular atrophy, which induces a myofibril component change, is not clearly understood.

[Methods]

We performed 15 days of hindlimb unloading on rats to investigate the transitions of these proteins by analyzing their absolute quantities. Protein contents were analyzed in the soleus, plantaris, and gastrocnemius muscles of the unloading and control groups (N = 6).

[Results]

All three muscles were significantly atrophied by hindlimb unloading (P < 0.01): soleus (47.5%), plantaris (16.3%), and gastrocnemius (21.3%) compared to each control group. αB-crystallin was significantly reduced in all three examined unloaded hindlimb muscles compared to controls (P < 0.01) during the transition of the myosin heavy chain to fast twitch muscles. α-Tubulin responded only in the unloaded soleus muscle. Muscle atrophy induced the reduction of αB-crystallin and α-tubulin expressions in plantar flexor muscles with a shift to the fast muscle fiber compared to the control.

[Conclusion]

The novel finding of this study is that both proteins, αB-crystallin and α-tubulin, were downregulated in slow muscles (P < 0.01); However, α-tubulin was not significantly reduced compared to the control in fast muscles (P < 0.01).  相似文献   

11.
A cDNA encoding an α-l-fucosidase from Drosophila melanogaster was obtained from the recombinant plasmid named pGEM-DmFuca and inserted into the pBacHTeGFPT vector to construct the recombinant donor plasmid which was transposed to the target AcBacmid in Escherichia coli (DH10) by Tn7 transposition function. The AcBacmid-GFP-DmFuca plasmid was used to transfect Tn-5B1-4 cells of the Cabbage looper Trichoplusia ni. SDS-PAGE analysis revealed a band of about 80 kDa. Using a polyclonal antiserum raised against α-l-fucosidase protein from D. melanogaster Western blotting analysis confirmed that the fusion protein eGFP-DmFuca has been successfully expressed in a biologically active form in Tn-5B1-4 cells. The recombinant protein, containing the histidine-tag motif, was purified using an affinity chromatography column. In vitro binding assays the purified eGFP-DmFuca interacts with α-l-fucose residues present on the micropyle of the D. melanogaster eggshell, confirming that the α-l-fucosidase is a good candidate as receptor involved in gamete interactions in fruit fly.  相似文献   

12.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

13.
14.
Limb-bud and heart (LBH) gene has received increasing attention in recent cancer studies. Here we investigated the role of the LBH gene in regulating the metastasis capacity and epithelial-mesenchymal transition (EMT) of nasopharyngeal carcinoma (NPC) cells, and its potential mechanism. The expressions of LBH and αB-crystallin (CRYAB) were modulated by lentiviral infection, or plasmid/siRNA transfection, and the phosphorylation of p38 was suppressed by an inhibitor, to explore their functions in modulating NPC cell phenotypes, as well as the relationships of these factors with each other. Cellular proliferation, migration and invasion were examined by RTCA system, Transwell assays and Matrigel Transwell assays respectively. The EMT progression was indicated by RT-qPCR and Western blotting measuring the expressions of EMT biomarkers. NPC xenografts were constrcucted, and formed tumors were sectioned for morphology and immunohistofluorescence. The interaction between LBH and CRYAB was examined by colocalization and Fluorescence resonance energy transfer (FRET) analysis. We reached the conclusion that LBH inhibits the proliferation, migration, invasion and EMT of NPC cells, and its effects were partially achieved by suppressing p38 phosphorylation, which subsequently downregulates the mRNA expression and phosphorylation of CRYAB, while CRYAB directly interacts with LBH in NPC cells. This LBH-related pathway we revealed provides a novel therapeutic target for nasopharyngeal carcinoma research.  相似文献   

15.
Mitochondrial DNA depleted (ρ0) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-κB and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental ρ+ HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in ρ0 cells compared to ρ+ HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, ΙL17Β, ΙL18, ΙL19, and ΙL28Β) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-κB and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-κB/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in ρ+ HSF, but this response was substantially decreased in ρ0 HSF. Suppression of the IKK–NF-κB pathway by the small molecular inhibitor BMS-345541 and of the JAK2–STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated ρ+ HSF. Inhibitory antibodies against IL6, the main activator of JAK2–STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-κB activation was partially lost in ρ0 HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-κB targets, further suppressing IL6–JAK2–STAT3 that in concert with NF-κB regulated protection against TRAIL-induced apoptosis.  相似文献   

16.
Epithelial cells lining the murine genital tract act as sentinels for microbial infection, play a major role in the initiation of the early inflammatory response, and can secrete factors that modulate the adaptive immune response when infected with Chlamydia. C. muridarum-infected murine oviduct epithelial cells secrete the inflammatory cytokines IL-6 and GM-CSF in a TLR2-dependent manner. Further, C. muridarum infection induces IFN-β synthesis in the oviduct epithelial cells in a TRIF-dependent manner. Because murine oviduct epithelial cells express TLR3 but not TLRs 4, 7, 8, or 9, we hypothesized that TLR3 or an unknown TRIF-dependent pattern recognition receptor was the critical receptor for IFN-β production. To investigate the role of TLR3 in the Chlamydia-induced IFN-β response in oviduct epithelial cells, we used small interfering RNA, dominant-negative TLR3 mutants, and TLR3-deficient oviduct epithelial cells to show that the IFN-β secreted during C. muridarum infection requires a functional TLR3. Interestingly, we demonstrate that the TLR3 signaling pathway is not required for IFN-β synthesis in C. muridarum-infected macrophages, suggesting that there are alternate and redundant pathways to Chlamydia-induced IFN-β synthesis that seem to be dependent upon the cell type infected. Finally, because there is no obvious dsRNA molecule associated with Chlamydia infection, the requirement for TLR3 in Chlamydia-induced IFN-β synthesis in infected oviduct epithelial cells implicates a novel ligand that binds to and signals through TLR3.  相似文献   

17.
Applied Microbiology and Biotechnology - The cell surface of Toxoplasma gondii is covered by antigens (SAGs) from the SRS family anchored by glycosylphosphatidylinositol (GPI) and includes antigens...  相似文献   

18.
The cytokine tumor necrosis factor (TNF) induces caspase-dependent cell death in a subset of tumor cells. In this report, we show a novel suppressive effect of calpeptin, a calpain inhibitor, on TNF-induced cell death and accumulation of p53 in L929 mouse fibrosarcoma. Exposure to 10 ng/ml TNF induced cell death in >50% of L929 cells within 12 h and stimulated accumulation of p53 (8-fold). Preincubation of cells with calpeptin blocked both TNF-induced cell death and accumulation of p53 as examined with Western blot. TNF-induced accumulation of p53 was in part contributed by increase of p53 mRNA level (2.2-fold) in a calpeptin-insensitive manner. Interestingly, other calpain inhibitors tested did not show these effects like calpeptin and TNF treatment did not increase apparent calpain activity in L929 cells, suggesting that calpeptin may have another function besides targeting calpain. Expression of dominant negative mutant p53Val135 reduced the incidence of TNF-mediated cell death. Taken together, our findings suggest that TNF induces calpeptin-dependent, but calpain-independent accumulation of p53 protein as a necessary step leading to death in L929 cells.  相似文献   

19.
20.
Oligodendrocyte precursor cells (OPCs) are most susceptible to oxidative stress in the brain. However, the cause of differences in susceptibility to oxidative stress between OPCs and mature oligodendrocytes (mOLs) remains unclear. Recently, we identified in vivo that αB-crystallin (aBC) is expressed in mOLs but not in OPCs. Therefore, we examined in the present study whether aBC expression could affect cell survival under oxidative stress induced by hydrogen peroxide using primary cultures of OPCs and mOLs from neonatal rat brains. Expression of aBC was greater in mOLs than in OPCs, and the survival rate of mOLs was significantly higher than that of OPCs under oxidative stress. Suppression of aBC by siRNA transfection resulted in a decrease in the survival rate of mOLs under oxidative stress. These data suggest that higher susceptibility of OPCs than mOLs to oxidative stress is due, at least in part, to low levels of aBC expression. [BMB Reports 2013; 46(10): 501-506]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号