首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of thyroid hormones on Leydig cells in the postnatal testis   总被引:4,自引:0,他引:4  
Thyroid hormones (TH) stimulate oxidative metabolism in many tissues in the body, but testis is not one of them. Therefore, in this sense, testis is not considered as a target organ for TH. However, recent findings clearly show that TH have significant functions on the testis in general, and Leydig cells in particular; this begins from the onset of their differentiation through aging. Some of these functions include triggering the Leydig stem cells to differentiate, producing increased numbers of Leydig cells during differentiation by causing proliferation of Leydig stem cells and progenitors, stimulation of the Leydig cell steroidogenic function and cellular maintenance. The mechanism of action of TH on Leydig cell differentiation is still not clear and needs to be determined in future studies. However, some information on the mechanisms of TH action on Leydig cell steroidogenesis is available. TH acutely stimulate testosterone production by the Leydig cells in vitro via stimulating the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; StAR is associated with intracellular trafficking of cholesterol into the mitochondria during steroid hormone synthesis. However, the presence and/or the types of TH receptors in Leydig cells and other cell types of the Leydig cell lineage is still to be resolved. Additionally, it has been shown that thyrotropin-releasing hormone (TRH), TRH receptor and TRH mRNA in the testis in many mammalian species are seen exclusively in Leydig cells. Although the significance of the latter observations are yet to be determined, these findings prompt whether hypothalamo-pituitary-thyroid axis and hypothalamo-pituitary-testis axis are short-looped through Leydig cells.  相似文献   

2.
The MA-10 Leydig tumor cells take up low-density lipoprotein (LDL) from the medium and store the LDL-derived cholesterol as cholesterol esters that can be subsequently mobilized and used for steroid hormone synthesis. The present studies investigate the mechanisms by which cAMP acutely regulates the cellular content of cholesterol esters. In the absence of cholesterol utilization for steroidogenesis, cAMP stimulates cholesterol ester hydrolysis and ester resynthesis proportionally. The augmentation of ester hydrolysis by cAMP is completely matched by increased activity of the acyl-coenzyme-A:cholesterol acyltransferase and thus does not regulate cellular cholesterol ester concentration per se. The more important action of cAMP is to interrupt the cycle of hydrolysis and ester resynthesis by decreasing cholesterol re-esterification. In cells actively synthesizing steroid hormones, cholesterol reesterification is decreased by 82%. The decrease in cholesterol re-esterification occurs because cAMP directs cholesterol normally destined for re-esterification into steroid synthesis; simply blocking the utilization of cholesterol for steroidogenesis completely prevents net cholesterol ester hydrolysis and increases the cellular rate of cholesterol esterification.  相似文献   

3.
In this paper the effects of growth factors on the differentiated function of pig Leydig cells and other steroidogenic cells are reviewed. Two types of action have been observed, i.e. positive or negative acute effects on testosterone secretion, and long-term trophic effects of hCG receptor and responsiveness to hCG. Among the growth factors, insulin-like growth factor I (IGF-I) and transforming growth factor beta (TGF beta-1) are of particular interest. IGF-I is required for the maintenance and probably the expression of differentiated functions of several steroidogenic cells, including the Leydig cells. TGF beta-1 has effects opposite to IGF-I on Leydig cell functions. When considering effects of growth factors on Leydig cells, caution should be taken in extrapolating results obtained in one species to another.  相似文献   

4.
Native rat atrial natriuretic peptide (NANP) was shown to bind with high affinity and to increase intracellular levels of cGMP in cultured rat Leydig tumor cells. A linear analog of NANP which lacks the disulfide-linked bridge structure also bound with high affinity but did not increase levels of intracellular cGMP or antagonize the increase of this cyclic nucleotide by NANP. These data are consistent with the existence of two functional subpopulations of ANP receptors on cultured rat Leydig tumor cells; one which is capable of activating guanylate cyclase and one which is not linked to this enzyme.  相似文献   

5.
Renin and angiotensins coexist in various tissues. The mode of control of the extrarenal renin-angiotensin system is not clear. Whether it is renin or angiotensin that is secreted has not been identified. We have investigated gonadotropin-dependent synthesis and subsequent release of the components of the intracellular renin-angiotensin system in a cloned and cultured mouse Leydig tumor cell line (MA-10). Treatment of cultured Leydig cells with bovine luteinizing hormone (bLH, 100 ng/ml) or human chorionic gonadotropin (hCG, 25 ng/ml) resulted in greater than 150- and 40- fold increased formation of angiotensin I and angiotensin II. In cells incubated with bLH or hCG, the majority of AII (up to 90%) was found in the culture medium while most of angiotensin I (greater than 85%) was in the cell lysate. Treatment with gonadotropic hormones (bLH/ hCG) increased renin 35- to 40-fold. Renin activity was confined mainly in the cell lysate even after the stimulation by gonadotropins, and only 1-2% of the total renin activity was detectable in culture medium. These results were interpreted that, in these transformed cells, hormonally-induced renin functions to generate angiotensin I within the Leydig cell and it is the angiotensins which are secreted.  相似文献   

6.
Porcine cultured Leydig cells (LC) lose hCG receptors and hCG responsiveness (cAMP and testosterone) when they are cultured for three days in a defined medium without insulin or somatomedin C (Sm-C) (Insulin-like growth factor I). In the presence of insulin (50 ng/ml) or of Sm-C (10 ng/ml) the loss of the hCG receptor number and the decreased cAMP response to hCG were prevented, but the steroidogenic response to hCG was only partially prevented. This parameter became normal when cells were pretreated with either Sm-C (10 ng/ml) plus insulin (50 ng/ml) or with insulin alone at high concentrations (5 micrograms/ml). These results indicate that both Sm-C and insulin acting through their own receptors increase Leydig cell steroidogenic capacity by increasing hCG receptor number and improving some step beyond cAMP formation.  相似文献   

7.
Leydig cells are the primary source of androgens in the mammalian testis. It is established that the luteinizing hormone (LH) produced by the anterior pituitary is required to maintain the structure and function of the Leydig cells in the postnatal testis. Until recent years, a role by the thyroid hormones on Leydig cells was not documented. It is evident now that thyroid hormones perform many functions in Leydig cells. For the process of postnatal Leydig cell differentiation, thyroid hormones are crucial. Thyroid hormones acutely stimulate Leydig cell steroidogenesis. Thyroid hormones cause proliferation of the cytoplasmic organelle peroxisome and stimulate the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; both peroxisomes and StAR are linked with the transport of cholesterol, the obligatory intermediate in steroid hormone biosynthesis, into mitochondria. The presence of thyroid hormone receptors in Leydig cells and other cell types of the Leydig lineage is an issue that needs to be fully addressed in future studies. As thyroid hormones regulate many functions of Sertoli cells and the Sertoli cells regulate certain functions of Leydig cells, effects of thyroid hormones on Leydig cells mediated via the Sertoli cells are also reviewed in this paper. Additionally, out of all cell types in the testis, the thyrotropin releasing hormone (TRH), TRH mRNA and TRH receptor are present exclusively in Leydig cells. However, whether Leydig cells have a regulatory role on the hypothalamo-pituitary-thyroid axis is currently unknown.  相似文献   

8.
《Tissue & cell》2016,48(5):432-441
We report the effects of polychlorinated napthalanes (PCNs) on the mRNA expression of estrogen-related receptors (ERRs) α, β and γ, calcium (Ca2 + ) concentration, and sex steroid secretion in mouse primary and tumor Leydig cells. The cells were exposed to a mixture of PCNs (10 nM) alone or in combination with one of sex steroid receptor antagonists; 182,780 (ICI; 10 μM); hydroxyflutamide (HF; 10−4 M) and G-coupled estrogen receptor antagonist (G15; 10 nM) respectively. The expression of mRNAs and protein for ERRα, β, and γ was detected in primary and tumor Leydig cells. The expression of ERRs was always lower in primary Leydig cells. Exposure of Leydig cells to PCNs significantly increased the expression of ERRs mRNA irrespective of the cell type. Concomitantly, an increased concentration of Ca2+ and sex steroids was revealed in exposed cells. After ICI, HF or G15 was added no changes in expression of ERRs was found. In Leydig cells changes in ERRs expression at mRNA level are clearly linked to changes in Ca2+ level and steroid secretion. Estrogen and androgen receptors are not involved in PCNs action in Leydig cells. The effect of PCNs on mouse Leydig cells is independent on the cell of origin (primary or tumor).  相似文献   

9.
K N Pandey  T Inagami  K S Misono 《Biochemistry》1986,25(26):8467-8472
Atrial natriuretic factor (ANF) is a peptide hormone discovered recently from the heart atrium that possesses potent natriuretic and vasorelaxant activities. Recently we found that ANF markedly stimulates intracellular cGMP and almost completely inhibits cAMP accumulation in testicular interstitial tumor cells [Pandey, K. N., Kovacs, W. J., & Inagami, T. (1985) Biochem. Biophys. Res. Commun. 133, 800-806]. These actions of ANF suggest the presence of ANF receptors in testicular interstitial cells. In this study, cultured murine Leydig tumor cells have been shown to contain specific binding sites for ANF. Saturation binding studies indicated a single class of binding sites with a Kd of 5 X 10(-9) M at a density of 2 X 10(6) sites/cell. The binding of mono[125I]iodo-ANF (125I-ANF) was competed by unlabeled ANF in a dose-dependent manner. Hormones unrelated to ANF such as angiotensin I, bovine luteinizing hormone, and human chorionic gonadotropin were not able to compete against 125I-ANF. The binding of 125I-ANF was rapid, reaching maximum levels in 15 min at 4 degrees C. At 37 degrees C, the cell-bound 125I label was quickly decreased. Pretreatment of cells with NH4Cl, chloroquine, or NaN3 resulted in significant increases in maximum levels of the cell-bound 125I radioactivity. A photoaffinity reagent for ANF receptor was prepared by reacting ANF with succinimido 4-azidobenzoate, and resultant 4-azidobenzoyl- (AZB-) ANF was purified by high-performance liquid chromatography (HPLC). AZB-ANF was radioiodinated by use of chloramine T and purified again by HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In this study we show that the electrophysiological properties of a clonal line of prolactin secreting (PRL) rat pituitary cells (GH3/B6) are altered by local application of γ-aminobutyric acid (GABA). The effects of GABA on these cells are: 1) decrease in membrane conductance and 2) hyperpolarization of 5 to 10 mV. When the cells were spontaneously active, GABA reduced and usually arrested action potential firing. This effect was completely reversible. No desensitization of GABA effects was observed even after several applications. The reversal potential of the GABA induced responses was found to be near — 40 mV. Pharmacological studies were performed in order to assess the specificity of the response to GABA and to attempt to characterize the ionic mechanism involved. GABAergic receptor antagonists such as picrotoxin and bicuculline prevented the effect of GABA, whereas dopaminergic receptor antagonists, such as haloperidol or chlorpromazine had no effect. Furosemide, known as a blocker of chloride ion transport in a number of systems, competed with GABA. This substance induced a response similar to that observed with GABA and reduced the effect of GABA when administered before GABA. This study demonstrates a direct and specific effect of GABA on the electrical activity of a tumoral line of rat pituitary cells. Since this electrical activity has previously been shown to be calcium dependent and involved in the secretion of PRL by these cells, the data presented here suggest GABA as an inhibitory regulator of PRL secretion directly at the pituitary level.  相似文献   

11.
Chen LY  Huang YL  Liu MY  Leu SF  Huang BM 《Life sciences》2003,72(17):1983-1995
Amphetamine influences plasma and testicular testosterone levels. However, there is no evidence that amphetamine can directly influence Leydig cell functions. In the present study, a MA-10 mouse Leydig tumor cell line was used to determine whether and how amphetamine affected Leydig cell steroidogenesis. MA-10 cells were treated with different concentrations of amphetamine without or with human chorionic gonadotropin (hCG) and/or enzyme precursors over different time durations. Steroid production, enzyme activities and StAR protein expression were determined. Amphetamine alone had no any effect on MA-10 cell steroidogenesis. However, amphetamine (10(-11)M and 10(-10)M) significantly enhanced hCG-treated progesterone production at 3 hr in MA-10 cells (p < 0.05). Furthermore, amphetamine significantly induced more progesterone production upon treatment with 22R-hydroxycholesterol (p < 0.05), a precursor of P450 side-chain cleavage enzyme (P450scc). However, amphetamine did not induce more progesterone production when treated with pregnenolone (p > 0.05), a precursor of 3beta-hydroxysteroid dehydrogenase. In addition, the expressions of StAR protein and P450scc enzyme were not significantly different between hCG alone and hCG plus amphetamine treatment in MA-10 cells (p > 0.05). These results suggested that amphetamine enhanced hCG-induced progesterone production in MA-10 cells by increasing P450scc activity without influencing StAR protein and P450scc enzyme expression or 3beta-HSD enzyme activity.  相似文献   

12.
13.
The effect of PGF2 alpha and its analogues on androgen production and activity of delta 5,3 beta-hydroxysteroid dehydrogenase in rat Leydig cells in vitro was investigated. Prostaglandin of the F type inhibit the enzyme activity and hormone secretion by cultured Leydig cells. This effect was considerably stronger in Leydig cells isolated from mature rats, than by Leydig cells from immature animals.  相似文献   

14.
We have previously reported that low-density lipoprotein (LDL) enhances and prolongs steroidogenesis in human choriogonadotropin (CG)-stimulated Leydig tumor cells (MA-10). The studies described herein elucidate the mechanisms by which LDL increases human CG stimulated steroidogenesis. Our results show that the MA-10 cells express the classic LDL pathway. LDL is bound to specific surface binding sites which are regulated by the level of intracellular cholesterol. The cellular processing of bound LDL is temperature-dependent and is inhibited by blocking lysosomal function. By using an LDL derivative in which the core cholesteryl esters have been replaced with [3H]cholesteryl linoleate, we show that LDL cholesterol is rapidly utilized for steroid hormone synthesis. The utilization of LDL cholesterol quantitatively accounts for the LDL-induced augmentation of steroidogenesis. We also show that the addition of LDL to human CG-stimulated MA-10 cells maintains cellular free and esterified cholesterol levels and increases progesterone biosynthesis. The addition of LDL does not, however, affect the cellular utilization of preexisting cholesterol stores for steroidogenesis.  相似文献   

15.
The plant lectins, concanavalin A (conA), wheat germ agglutinin (WGA), and phytohemagglutinin (PHA) stimulate steroidogenesis in cultured adrenal tumor cells. ConA maximally stimulated steroidogenesis at 100 μg/ml following an approximate 4 h lag phase. ConA stimulation was completely inhibited by α-methyl-d-mannopyranoside and the WGA effect was prevented by N-acetyl-d-glucosamine. It was also found that conA alone did not cause a measurable increase in either intra- or extracellular cyclic adenosine 3′5′-monophosphate (cAMP) production. In addition, conA when added simultaneously with adrenocorticotropin (ACTH) doubled the intra- and extracellular cAMP production over controls treated with ACTH alone. This enhancement effect was dose dependent. When Y-1 cells were preincubated with conA and then treated with either ACTH or cholera enterotoxin (CT) there was a dose- and time-dependent inhibition of induced cAMP production. In the case of CT, the inhibitory effect occurred even with simultaneous addition of conA and CT. This effect was reversed by addition of both α-methyl-d-mannopyranoside and washing with Eagle's minimal essential medium (MEM) 1 h after CT had bound to its receptor. This reversal was not apparent for the inhibitory effect of conA on ACTH-induced cAMP production which occurred after 2 h of preincubation with conA. These results demonstrate that conA, as well as the other plant lectins, interact with specific membrane receptors to reversibly stimulate steroid production as well as enhancing or inhibiting ligand-induced cAMP production in cultured adrenal tumor cells.  相似文献   

16.
Monkey hepatocarcinoma cell monolayer cultures (NCLP-6E) metabolized thyroxine, 3,5,3'-triiodothyronine, 3,3',5'-triiodothyronine and 3,3'-diiodothyronine by phenolic and nonphenolic ring deiodinations and sulfation of the deiodinated products, as shown in previous work with this system. The effects of the antithyroid drugs, propylthiouracil (PTU) and methylmercaptoimidazole (MMI), on these processes was investigated. PTU, at 0.1 and 1 mM, inhibited only phenolic ring deiodination. MMI at 1 mM had no effect, but 32 mM inhibited deiodination of both rings as well as sulfation. The findings suggest that the increased serum rT3 level caused by PTU in vivo is the result of decreased rT3 deiodination, in contrast to the increased rT3 production which is caused by starvation.  相似文献   

17.
Leydig cells, traditionally known as the steroidogenic workhorses of the testis, are now known to synthesize significant amounts of non-steroid products including some potent bioactive proteins and peptides. These products are currently being investigated for their potential role in the paracrine regulation of spermatogenesis in the nearby seminiferous tubules and in the autocrine regulation of Leydig cell function.  相似文献   

18.
The dose and time treatment effects of arginine vasopressin (AVP) on basal and hCG-stimulated testosterone accumulation by purified mouse Leydig cells in primary culture were examined. Pretreatment for 24 h of Leydig cells with AVP caused a stimulation of the acute (3 h) basal testosterone accumulation. In these conditions, progesterone accumulation was also increased. The stimulatory effect of AVP (10(-11)-10(-5) M) on testosterone accumulation was dose-dependent and as little as 10(-11) M-AVP caused significant stimulation whilst maximal effect was achieved with 10(-7) M. Oxytocin (10(-6) M) also showed a stimulation of testosterone accumulation in basal conditions, but the other peptides tested at the same concentration (neurotensin, somatostatin and substance P) did not have any effect. When Leydig cells were exposed to AVP for a longer period (48 or 72 h), the increase in basal testosterone accumulation disappeared. AVP treatment of Leydig cells for 72 h led to a significant and dose-dependent reduction in the hCG-responsiveness without altering the slope of the hCG dose-response curve. This inhibitory effect, which was also observed when AVP-pretreated Leydig cells were acutely challenged for 3 h with 8-bromo-cAMP, was accompanied by a concomitant increase in progesterone accumulation. These results indicate that AVP can exert a dual effect on mouse Leydig cells: stimulatory on basal testosterone accumulation during short-term exposure (24 h) and inhibitory on the response to hCG stimulation after long-term treatment (72 h). They provide additional evidence that neurohypophysial peptides directly affect Leydig cell steroidogenesis.  相似文献   

19.
The expression of liver-specific functions of different dexamethasone-resistant variants derived from a well-differentiated dexamethasone-sensitive Reuber H35 rat hepatoma cell line (Faza 967) was examined during long-term cultivation. The dexamethasone-sensitive Faza 967 cells are characterized by the activity of tyrosine aminotransferase (TAT) and gluconeogenic enzymes, secretion of serum albumin, and the presence of liver isozymes of alcohol dehydrogenase (L-ADH), aldolase (aldolase-B), and five isoenzymes of lactate dehydrogenase (LDH). The hormone-resistant cells undergo a very dramatic change in expression of most liver-specific functions (dedifferentiation) during long-term culture, in contrast to the sensitive cells in which only certain functions (TAT activity, inducibility, and synthesis of serum albumin) exhibit considerable changes. The hormone-dependent growth sensitivity and the expression of other differentiated functions is not controlled in coordinated way in Faza 967 cells. The time course of the expression of liver-specific functions shows that the cells are resistant before they became 'dedifferentiated', i.e., loss of these liver-specific functions is not a prerequisite of the establishment of the hormone-resistant state.  相似文献   

20.
Abstract. The expression of liver-specific functions of different dexamethasone-resistant variants derived from a well-differentiated dexamethasone-sensitive Reuber H35 rat hepatoma cell line (Faza 967) was examined during long-term cultivation. The dexamethasone-sensitive Faza 967 cells are characterized by the activity of tyrosine aminotransferase (TAT) and gluconeogenic enzymes, secretion of serum albumin, and the presence of liver isozymes of alcohol dehydrogenase (L-ADH), aldolase (aldolase-B), and five isoenzymes of lactate dehydrogenase (LDH). The hormone-resistant cells undergo a very dramatic change in expression of most liver-specific functions (dedifferentiation) during long-term culture, in contrast to the sensitive cells in which only certain functions (TAT activity, inducibility, and synthesis of serum albumin) exhibit considerable changes. The hormone-dependent growth sensitivity and the expression of other differentiated functions is not controlled in coordinated way in Faza 967 cells. The time course of the expression of liver-specific functions shows that the cells are resistant before they became 'dedifferentiated', i.e., loss of these liver-specific functions is not a prerequisite of the establishment of the hormone-resistant state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号