共查询到20条相似文献,搜索用时 15 毫秒
1.
Zintis Inde 《Critical reviews in biochemistry and molecular biology》2018,53(1):99-114
The goal of cancer chemotherapy is to induce homogeneous cell death within the population of targeted cancer cells. However, no two cells are exactly alike at the molecular level, and sensitivity to drug-induced cell death, therefore, varies within a population. Genetic alterations can contribute to this variability and lead to selection for drug resistant clones. However, there is a growing appreciation for the role of non-genetic variation in producing drug-tolerant cellular states that exhibit reduced sensitivity to cell death for extended periods of time, from hours to weeks. These cellular states may result from individual variation in epigenetics, gene expression, metabolism, and other processes that impact drug mechanism of action or the execution of cell death. Such population-level non-genetic heterogeneity may contribute to treatment failure and provide a cellular “substrate” for the emergence of genetic alterations that confer frank drug resistance. 相似文献
2.
Urška RepnikVeronika Stoka Vito Turk Boris Turk 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(1):22-33
Lysosomes are the key degradative compartments of the cell. Lysosomal cathepsins, which are enclosed in the lysosomes, help to maintain the homeostasis of the cell's metabolism by participating in the degradation of heterophagic and autophagic material. Following the targeted lysosomal membrane's destabilization, the cathepsins can be released into the cytosol and initiate the lysosomal pathway of apoptosis through the cleavage of Bid and the degradation of the anti-apoptotic Bcl-2 homologues. Cathepsins can also amplify the apoptotic signaling, when the lysosomal membranes are destabilized at a later stage of apoptosis, initiated by other stimuli. However, the functional integrity of the lysosomal compartment during apoptosis enables efficient autophagy, which can counteract apoptosis by providing the energy source and by disposing the damaged mitochondria, which generate the ROS. Impairing autophagy by disabling the lysosome function is being investigated as an adjuvant therapeutic approach to sensitize cells to apoptosis-inducing agents. Destabilization of the lysosomal membranes by the lysosomotropic detergents seems to be a promising strategy in this context as it would not only disable autophagy, but also promote apoptosis through the initiation of the lysosomal pathway. In contrast, the impaired autophagy and lysosomal degradation linked with the increased oxidative stress underlie degenerative changes in the aging neurons. This further suggests that lysosomes and lysosomal cathepsins have a dual role in cell death. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome. 相似文献
3.
Previous studies have shown that testisin promotes malignant transformation in cancer cells. To define the mechanism of testisin-induced carcinogenesis, we performed yeast two-hybrid analysis and identified maspin, a tumor suppressor protein, as a testisin-interacting molecule. The direct interaction and cytoplasmic co-localization of testisin with maspin was confirmed by immunoprecipitation and confocal analysis, respectively. In cervical cancer cells, maspin modulated cell death and invasion; however, these effects were inhibited by testisin in parallel experiments. Of interest, the doxorubicin resistance was dramatically reduced by testisin knockdown (P = 0.016). Moreover, testisin was found to be over-expressed in cervical cancer samples as compared to matched normal cervical tissues. Thus, we postulate that testisin may promote carcinogenesis by inhibiting tumor suppressor activity of maspin.
Structured summary
MINT-7712215, MINT-7712176: Testisin (uniprotkb:Q9Y6M0) binds (MI:0407) to Maspin (uniprotkb:P36952) by pull down (MI:0096)MINT-7712188: Testisin (uniprotkb:Q9Y6M0) and Maspin (uniprotkb:P36952) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7712115: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by two-hybrid (MI:0018)MINT-7712162, MINT-7712128: Maspin (uniprotkb:P36952) physically interacts (MI:0915) with Testisin (uniprotkb:Q9Y6M0) by anti bait co-immunoprecipitation (MI:0006)MINT-7712147: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by anti tag co-immunoprecipitation (MI:0007) 相似文献4.
Jo YK Park SJ Shin JH Kim Y Hwang JJ Cho DH Kim JC 《Biochemical and biophysical research communications》2011,(4):2270-1043
Autophagy is a catabolic cellular process involving self-digestion and turnover of macromolecules and entire organelles. Autophagy is primarily a protective process in response to cellular stress, but it can be associated with cell death. Genetic evidence also supports autophagy function as a tumor suppressor mechanism. To identify specific regulators to autophagy, we screened the Lopac 1280 and the Prestwick chemical libraries using a cell-based screening system with autophagy marker (green fluorescence protein conjugated LC3 protein (GFP-LC3)). We identified ARP101, a selective matrix metalloproteinase-2 (MMP-2) inhibitor as one of the most potent inducer of autophagy. ARP101 treatment was highly effective in inducing the formation of autophagosome and conversion of LC3I into LC3II. Moreover, ARP101-induced autophagy was completely blocked in mouse embryo fibroblasts that lacked autophagy related gene 5 (ATG5−/− MEF). Interestingly, cell death induced by ARP101 was not inhibited by zVAD, a pan caspase inhibitor, whereas, it was efficiently suppressed by addition of 3-methyladenine, an autophagy inhibitor. These results suggest that the selective MMP-2 inhibitor, ARP101, induces autophagy and autophagy-associated cell death. 相似文献
5.
TRP channels form a superfamily of channel proteins exhibiting versatile regulatory characteristics with many channels participating in the regulation of Ca2+ homeostasis and influencing the cell fate. Multitude of evidence is emerging that the colocalization of TRP channels with Ca2+-sensing elements of specific regulatory pathways leading to either proliferation or apoptosis is what makes these channels participate in cell fate regulation and, in turn, determines the final effect of Ca2+ entry via the particular channel. This review focuses on the aspects of TRP channel localization and function that affect the balance between cell survival and death and how various dysregulations of these channels may lead to perturbed balance and onset of cancer. 相似文献
6.
Carcinogenesis is a complex and multistep process that involves the accumulation of successive transformational events driven by genetic mutations and epigenetic alterations that affect major cellular processes and pathways such as proliferation, differentiation, invasion and survival. Massive deregulation of all components of the epigenetic machinery is a hallmark of cancer. These alterations affect normal gene regulation and impede normal cellular processes including cell cycle, DNA repair, cell growth, differentiation and apoptosis. Since epigenetic alterations appear early in cancer development and represent potentially initiating events during carcinogenesis, they are considered as promising targets for anti-cancer interventions by chemopreventive and chemotherapeutic strategies using epigenetically active agents. In this field, plant-derived compounds have shown promise. Here, we will give an overview of plant-derived compounds displaying anticancer properties that interfere with the epigenetic machinery. 相似文献
7.
Tomonobu Kusano Chika Tateda Thomas Berberich Yoshihiro Takahashi 《Plant cell reports》2009,28(9):1301-1308
The voltage-dependent anion channels (VDACs), mitochondrial outer membrane components, are present in organisms from fungi
to animals and plants. They are thought to function in the regulation of metabolite transport between mitochondria and the
cytoplasm. Sufficient knowledge on plant VDACs has been accumulated, so that we can here summarize the current information.
Then, the involvement of mitochondria in plant defense and cell death is overviewed. While, in mammals, it is suggested that
VDAC, also known as a component of the permeability transition pore (PTP) complex formed in the junction site of mitochondrial
outer and inner membrane, is a key player in mitochondria-mediated cell death, little is known about the role of plant VDACs
in this process. We have shown that plant VDACs are involved in mitochondria-mediated cell death and in defense against a
non-host pathogen. In light of the current findings, we discuss the role of the PTP complex and VDAC as its component in plant
pathogen defense and cell death. 相似文献
8.
Haywood-Small SL Vernon DI Griffiths J Schofield J Brown SB 《Biochemical and biophysical research communications》2006,339(2):569-576
We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC(50) concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G(0)/G(1) cell cycle arrest during the phthalocyanine PDT-mediated response. 相似文献
9.
Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death. 相似文献
10.
The role of Bax inhibitor-1 (BI-1) in the protective mechanism against apoptotic stimuli has been studied; however, as little is known about its role in death receptor-mediated cell death, this study was designed to investigate the effect of BI-1 on Fas-induced cell death, and the underlying mechanisms. HT1080 adenocarcinoma cells were cultured in high concentration of glucose media and transfected with vector alone (Neo cells) or BI-1-vector (BI-1 cells), and treated with Fas. In cell viability, apoptosis, and caspase-3 analyses, the BI-1 cells showed enhanced sensitivity to Fas. Fas significantly decreased cytosolic pH in BI-1 cells, compared with Neo cells, and this decrease correlated with BI-1 oligomerization, mitochondrial Ca2+ accumulation, and significant inhibition of sodium-hydrogen exchanger (NHE) activity. Compared with Neo cells, a single treatment of BI-1 cells with the NHE inhibitor EIPA or siRNA against NHE significantly increased cell death, which suggests that the viability of BI-1 cells is affected by the maintenance of intracellular pH homeostasis through NHE. [BMB Reports 2014; 47(7): 393-398] 相似文献
11.
Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells 总被引:3,自引:0,他引:3
Neodymium, a rare earth element, was known to exhibit cytotoxic effects and induce apoptosis in certain cancer cells. Here we show that nano-sized neodymium oxide (Nano Nd2O3) induced massive vacuolization and cell death in non-small cell lung cancer NCI-H460 cells at micromolar equivalent concentration range. Cell death elicited by Nano Nd2O3 was not due to apoptosis and caspases were not involved. Electron microscopy and acridine orange staining revealed extensive autophagy in the cytoplasm of the cells treated by Nano Nd2O3. Autophagy induced by Nano Nd2O3 was accompanied by S-phase cell cycle arrest, mild disruption of mitochondrial membrane potential, and inhibition of proteasome activity. Bafilomycin A1, but not 3-MA, induced apoptosis while inhibiting autophagy. Our results revealed a novel biological function for Nano Nd2O3 and may have implications for the therapy of non-small cell lung cancer. 相似文献
12.
13.
程序性细胞死亡(programmed cell death,PCD)是指由基因控制的细胞自主的有序性死亡方式,涉及一系列基因的激活、表达以及调控等。目前,经典细胞凋亡被称为Ⅰ型PCD,而自噬性细胞死亡称为Ⅱ型PCD,坏死样程序性细胞死亡则被称为Ⅲ型PCD,它们在肿瘤的发生、发展及治疗过程中起非常重要的作用。该文结合国内外最新研究进展主要针对不同细胞死亡模式及其相互作用、关键作用蛋白,细胞自噬与肿瘤发生,细胞自噬、凋亡与肿瘤治疗作一简要综述,并展望发展前景,提出在肿瘤治疗中如何利用不同死亡模式的协同作用最大限度地发挥其临床应用价值。 相似文献
14.
Michael Jelínek Kamila Balu?íková Martina Schmiedlová Vlasta Němcová-Fürstová Jan ?rámek Jitka Stan?íková Ilaria Zanardi Iwao Ojima Jan Ková? 《Cancer cell international》2015,15(1)
Background
In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3).Methods and results
Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment.Conclusion
We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells. 相似文献15.
Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these. 相似文献
16.
Mitochondria,oxidative stress and cell death 总被引:4,自引:0,他引:4
Ott M Gogvadze V Orrenius S Zhivotovsky B 《Apoptosis : an international journal on programmed cell death》2007,12(5):913-922
In addition to the well-established role of the mitochondria in energy metabolism, regulation of cell death has recently emerged
as a second major function of these organelles. This, in turn, seems to be intimately linked to their role as the major intracellular
source of reactive oxygen species (ROS), which are mainly generated at Complex I and III of the respiratory chain. Excessive
ROS production can lead to oxidation of macromolecules and has been implicated in mtDNA mutations, ageing, and cell death.
Mitochondria-generated ROS play an important role in the release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and apoptosis. Cytochrome c release occurs by a two-step process that is initiated by the dissociation of the hemoprotein from its binding to cardiolipin,
which anchors it to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and results in an increased level of “free” cytochrome c in the intermembrane space. Conversely, mitochondrial antioxidant enzymes protect from apoptosis. Hence, there is accumulating
evidence supporting a direct link between mitochondria, oxidative stress and cell death. 相似文献
17.
Platycodin D (PD) is a major active component of the roots of Platycodon grandiflorum (Jacq.) A.DC. and possesses multiple biological and pharmacological properties, including anti-cancer activity. The aim of this study was to characterize PD-induced cytoplasmic vacuolation in human cancer cells and investigate the underlying mechanisms. PD-induced cancer cell death was associated with cytoplasmic pinocytic and autophagic vacuolation. Cellular energy levels were decreased by this compound, leading to the activation of AMP-activated protein kinase (AMPK). Additionally, compound C, an inhibitor of AMPK, completely prevented PD-induced vacuolation. These results suggest that PD induces cancer cell death, associated with excessive vacuolation through AMPK activation when cellular energy levels are low. Therefore, our findings provide a mechanistic rationale for a novel combinatorial approach using PD to treat cancer. 相似文献
18.
The mechanisms of sodium selenite-induced cell death in cervical carcinoma cells were studied during 24 h of exposure in the
HeLa Hep-2 cell line. Selenite at the employed concentrations of 5 and 50 μmol/L produced time- and dose-dependent suppression
of DNA synthesis and induced DNA damage which resulted in phosphorylation of histone H2A.X. These effects were influenced
by pretreatment of cells with the SOD/catalase mimetic MnTMPyP or glutathione-depleting buthionine sulfoximine, suggesting
the significant role of selenite-generated oxidative stress. Following the DNA damage, selenite activated p53-dependent pathway
as evidenced by the appearance of phosphorylated p53 and accumulation of p21 in the treated cells. Concomitantly, selenite
activated p38 pathway but its effect on JNK was very weak. p53- and p38-dependent signaling led to the accumulation of Bax
protein, which was preventable by specific inhibitors of p38 (SB 203580) and p53 (Pifithrin-α). Mitochondria in selenite-treated
cells changed their dynamics (shape and localization) and released AIF and Smac/Diablo, which initiated caspase-independent
apoptosis as confirmed by the caspase-3 activity assay and the low effect of caspase inhibitors z-DEVD-fmk and z-VAD-fmk on
cell death. We conclude that selenite induces caspase-independent apoptosis in cervical carcinoma cells mostly by oxidative
stress-mediated activation of p53 and p38 pathways, but other selenite-mediated effects, in particular mitochondria-specific
ones, are also involved. 相似文献
19.
《Bioorganic & medicinal chemistry》2014,22(21):6270-6287
Novel cationic dimethylaminopyridine derivatives of pentacyclic triterpenes were previously described to promote mitochondrial depolarization and cell death in breast and melanoma cell lines. The objective of this work was to further investigate in detail the mechanism of mitochondrial perturbations, correlating those effects with breast cancer cell responses to those same agents. Initially, a panel of tumor and non-tumor cell lines was grown in high-glucose or glucose-free glutamine-containing media, the later forcing cells to synthesize ATP by oxidative phosphorylation only. Cell proliferation, cell cycle, cell death and mitochondrial membrane polarization were evaluated. Inhibition of cell proliferation was observed, accompanied by an arrest in the G1-cell cycle phase, and importantly, by loss of mitochondrial membrane potential. On a later time-point, caspase-9 and 3 activation were observed, resulting in cell death. For the majority of test compounds, we determined that cell toxicity was augmented in the galactose media. To investigate direct evidences on mitochondria isolated rat liver mitochondria were used. The results showed that the compounds were strong inducers of the permeability transition pore. Confirming our previous results, this work shows that the novel DMAP derivatives strongly interact with mitochondria, resulting in pro-apoptotic signaling and cell death. 相似文献
20.
Chemoradiotherapy can induce immunogenic cell death, triggering danger signals such as high-mobility group box 1 protein, and resulting in T-cell immunity. This concept can potentially be harnessed for clinical therapy to enhance tumor-specific immunity. There is however limited information to translate this theory directly in a clinical setting. In this review, we will discuss and summarize molecular and cellular mechanisms underlying immunogenic tumor cell death induced by chemoradiotherapy, with emphasis on a clinical translation. 相似文献