首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
L-lactate uptake was measured in vesicles formed by intestinal brush border and baso-lateral membranes, using a rapid filtration technique. In the presence of a Na+ gradient directed into the vesicle, L-lactate can be transiently accumulated in brush border vesicles, but not in baso-lateral ones. The transient L-lactate accumulation does not occur in the presence of a KCl gradient. alpha-cyanocinammic acid strongly inhibits L-lactate uptake in brush border vesicles, but not in baso-lateral ones. These results support the existence of a carrier mediated, Na+ dependent, transport of L-lactate across the brush border membrane.  相似文献   

2.
The kinetics and specificity of L-lactate transport into cardiac muscle were studied during a single transit through the isolated perfused rabbit heart using a rapid (15 s) paired-tracer dilution technique. Kinetic experiments revealed that lactate influx was highly stereospecific and saturable with an apparent Kt = 19 +/- 6 mM and a Vmax = 8.4 +/- 1.5 mumol/min per g (mean +/- S.E., n = 14 hearts). At high perfusate concentrations (10 mM), the inhibitors alpha-cyano-4-hydroxycinnamate (Ki = 7.3 mM), pyruvate (Ki = 6.5 mM), acetate (Ki = 19.4 mM) and chloroacetate (Ki = 28 mM) reduced L-lactate influx, and Ki values were estimated assuming a purely competitive interaction of the inhibitors with the monocarboxylate carrier. The monocarboxylic acids [14C]pyruvate and [3H]acetate were themselves transported, and sarcolemmal uptakes of respectively 38 +/- 1% and 70 +/- 8% were measured relative to D-mannitol. Perfusion of hearts for 10-30 min with 0.15 or 1.5 microM glucagon increased myocardial lactate production and simultaneously inhibited tracer uptake of lactate, pyruvate and acetate. It is concluded that a stereospecific lactate transporter exhibiting an affinity for other substituted monocarboxylic acids is operative in the sarcolemmal plasma membrane of the rabbit myocardium.  相似文献   

3.
This study focuses on the maturation of the renal beta-amino acid transport system and uses dietary manipulation as a probe. The epithelial surface of the renal proximal tubule is responsible for the conservation of ions and organic solutes including beta-amino acids. This beta-amino acid transport system is stimulated during periods of reduced dietary intake and permits increased excretion following dietary excess. We have examined transport of the sulfur-containing beta-amino acid, taurine, as a measure of this renal adaptive response to fluctuations in dietary sulfur amino acid intake and as a substrate for the beta-amino acid transport system. A precession of taurine uptake values by brush border membrane vesicles (BBMV) prepared from nursing rats from youngest to oldest was evident. However, these membranes demonstrate the full renal adaptive response to altered sulfur amino acid intake after the first week of life. This adaptive response is expressed at the brush border surface by transport changes in both directions ("up regulation" and "down regulation"), through changes in the initial rate (15 sec) of Na+-taurine cotransport. No alterations in the lipid microenvironment of the membrane, as detected by altered membrane fluidity, were uncovered. Although vesicles from 7-day-old pups demonstrate adaptation and accumulate taurine to a limited extent, the accumulation of Na+, which energizes uptake, may be altered, thereby preventing full expression of the adaptive response and of transport capacity at this age.  相似文献   

4.
L-lactate transport in Ehrlich ascites-tumour cells.   总被引:10,自引:0,他引:10       下载免费PDF全文
Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids.  相似文献   

5.
1. The transport of L- and DL-2-hydroxy 4-methylthiobutanoic acid (HMB), the methionine hydroxy analogue, by brush border membrane vesicles (BBMV) from chick small intestine was the sum of a saturable Michaelian component and a diffusive term. 2. Unlike that of L- and DL-MET, uptake was Na+-independent and electroneutral. 3. The inhibition of L-HMB transport by L-lactate, a structural analogue, and D-HMB as well, was of the competitive type. 4. Preloading of BBMV with D-HMB but not with L-lactate or L-MET trans-stimulated the influx of labelled L-HMB. 5. HMB uptake by rat and chick intestinal BBMV exhibited similar characteristics but the chick nonstereospecific transport system appeared to be unable to carry out L-lactate translocation.  相似文献   

6.
The effect of ethanol on sodium and glucose transport in rabbit renal brush border membrane vesicles was examined. When membrane vesicles were preincubated in the presence of ethanol the sodium-dependent D-glucose uptake was significantly inhibited. This effect, as suggested by O'Neill et al. (1986) FEBS Lett. 194, 183-188, may be due to a faster collapse of the Na+ gradient. As a matter of fact, the amiloride-insensitive sodium pathway was increased by ethanol in our brush border membrane preparation. However, sodium/D-glucose cotransport was inhibited by ethanol, although to a lesser degree, also in the absence of a sodium gradient. In addition, ethanol inhibited glucose-dependent sodium uptake, suggesting that a direct interaction with the translocator was involved. This conclusion was also supported by kinetic measurements showing a decrease of Vmax and an increase in Km for glucose in membrane vesicles treated with ethanol. Moreover, ethanol influenced the interaction of phlorizin with the cotransporter: uptake experiments performed in the presence of the two inhibitors demonstrated that phlorizin and ethanol behave as not mutually exclusive inhibitors of D-glucose transport. These data indicate that in rabbit renal brush border membranes ethanol not only affects the 'passive pathway', i.e. the sodium permeability, but it also directly interferes with carrier functions.  相似文献   

7.
Uptake and inhibitory kinetics of [3H]L-threonine were evaluated in preparations of pig jejunal brush border membrane vesicles. Uptake of [3H]L-threonine under O-trans, Na+ gradient, and O-trans, Na(+)-free conditions was best described by high affinity transport (Km < 0.01 mM) plus a nonsaturable component. The maximal velocity of transport was 3-fold greater under Na+ gradient conditions. 100 mM concentrations of all of the dipolar amino acids and 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid caused complete inhibition of [3H]L-threonine transport under Na+ gradient and Na(+)-free conditions. Imino acids, anionic amino acids, cationic amino acids, and methylamino-isobutyric acid caused significant partial inhibition of L-threonine uptake. Inhibitor concentration profiles for proline and lysine were consistent with low affinity competitive inhibition. The Ki values of alanine and phenylalanine approximated 0.2 and 0.5 mM, respectively, under both Na+ gradient and Na(+)-free conditions. These data indicate that the transport system available for L-threonine in the intestinal brush border membrane (system B) is functionally distinct from other amino acid transport systems. Comparison of kinetics parameters in the presence and absence of a Na+ gradient suggests that both partially and fully loaded forms of the carrier can function to translocate substrate and that Na+ serves to accelerate L-threonine transport by a mechanism that does not involve enhanced substrate binding.  相似文献   

8.
The effect of the transport of tricarboxylic acid cycle intermediates on the membrane potential of renal brush border vesicles was studied using fluorescence of the cyanine dye, 3,3′-dipropylthiadicarbocyanine iodide. The behavior of the dye in the preparation was established with valinomycin-induced K+-diffusion potentials; increases in fluorescence were associated with depolarizing conditions. Addition of 1 mM succinate or citrate to membrane/dye suspensions produced transient increases in fluorescence, indicative of a depolarizing event(s) associated with the transport of these substrates. The transient response in fluorescence was Na+ dependent, of greater magnitude under Na+-gradient as compared to Na+-equilibrium conditions, and was a saturable function of substrate concentration. The specificity of the fluorescence response was identical to that obtained from studies of the competitive inhibition of succinate transport by tricarboxylic acid cycle intermediates and analogs. We conclude that the major tricarboxylic acid cycle intermediates are transported via a common Na+-dependent transport system in renal brush border membranes.  相似文献   

9.
The effect of dibutyryl cyclic AMP on the transport of alpha-methyl-D-glucoside and alpha-aminoisobutyric acid in separated tubules and purified brush border membranes from rabbit kidney was investigated using a rapid filtration procedure. Dibutyryl cyclic AMP stimulated the uptake of alpha-methyl-D-glucoside and alpha-aminoisobutyric acid by separated renal tubules in agreement iwth prior studies utilizing renal slices (Rea, C. and Segal, S. (1973) Biochim. Biophys. Acta 311, 615--624; Weiss, I.W., Morgan, K. and Phang, J.M. (1972) J. Biol. Chem. 247, 760--764). However, in contrast to previous reports, no preincubation of the tissue with dibutyryl cyclic AMP was required for stimulation of transport to be manifest. Dibutyryl cyclic AMP stimulated oxygen consumption by separated tubules suggesting that stimulation of transport may occur by a linkage with renal oxidative metabolism. Dibutyryl cyclic AMP increased the uptake of alpha-aminoisobutyric acid into purified renal brush border membranes. However the uptakes of alpha-methyl-D-glucoside, proline, leucine and phosphate into brush border membranes were significantly inhibited.  相似文献   

10.
The possibility of the involvement of intracellular calcium in the action of parathyroid hormone on phosphate transport in renal brush border membrane was examined. Preincubation of rabbit renal proximal tubules with parathyroid hormone or 8-bromo-cAMP induced a significant inhibition on phosphate uptake by the brush border membrane vesicles isolated therefrom. The addition of intracellular Ca antagonists, trifluoperazine or W-7, to the preincubation medium, alone was without effect on phosphate uptake by the brush border membrane vesicles, but abolished the inhibitory effects of parathyroid hormone and 8-bromo-cAMP.  相似文献   

11.
Folate reabsorption by the mammalian kidney occurs following a tight binding reaction with the renal brush border membrane. Previous studies have shown that transport of folic acid (PteGlu) by rat kidney brush border membrane vesicles occurs maximally at pH 5.6 via a saturable system that is associated with a binding component. The present studies have shown that the pH dependency of transport was due to the development of the transmembrane pH gradient (7.3 in/5.6 out), not to the acidic pH per se. The pH gradient-mediated transport was stimulated by an inwardly directed ionic gradient, either of NaCl or choline chloride. These gradients also stimulated the membrane binding of PteGlu suggesting that NaCl and choline chloride may have increased PteGlu transport by altering binding to the brush border membrane. Renal brush border membrane vesicular transport of PteGlu was not affected by induction of a relatively positive intravesicular space. Transport was inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, an anion exchange inhibitor. The results suggest that rat kidney brush border membrane transport of PteGlu is initiated by association with a specific membrane protein, followed by transfer of folate across the membrane. The overall activity is influenced by a transmembrane pH gradient.  相似文献   

12.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

13.
There is an overlap of carrier-mediated L-amino acid transport and apparent simple diffusion when measured in intestinal brush border membrane vesicles. Using L-threonine and L-glutamine as representative amino acids, this study was undertaken to estimate apparent simple diffusion of L-amino acids and to establish the effective dosage of HgCl2 for completely blocking carrier-mediated L-amino acid transport in porcine jejunal enterocyte brush border membrane vesicles. Jejunal mucosa was scraped from three pigs weighing 26 kg. Enterocyte brush border membrane vesicles, with an average enrichment of 24-fold in sucrase specific activity, were prepared by Mg2+-precipitation and differential centrifugation. In vitro uptake was measured by the fast filtration manual procedure. HgCl2 blocked the carrier-mediated initial transport of L-threonine and L-glutamine under Na+-gradient condition in a dose-dependent manner. At the minimal concentration of 0.165 micromol HgCl2 mg(-1) protein, carrier-mediated L-threonine and L-glutamine transport was completely inhibited. The apparent L-threonine and L-glutamine diffusion was estimated to be 8.6+/-0.7 and 12.4+/-1.0% of the total uptake at the substrate concentrations of 5 microM (L-threonine) and 50 microM (L-glutamine). Therefore, the treatment of porcine brush border membrane vesicles with a minimum of 0.165 micromol HgCl2 mg(-1) protein completely blocks carrier-mediated L-amino acid transport and enables the direct estimation of apparent L-amino acid diffusion in enterocyte brush border membrane vesicles.  相似文献   

14.
1. Time courses for the uptake of L-lactate, D-lactate and pyruvate into isolated cardiac ventricular myocytes from guinea pig were determined at 11 degrees C or 0 degrees C (for pyruvate) in a citrate-based buffer by using a silicone-oil-filtration technique. These conditions enabled initial rates of transport to be measured without interference from metabolism of the substrates. 2. At a concentration of 0.5 mM, transport of all these substrates was inhibited by approx. 90% by 5 mM-alpha-cyano-4-hydroxycinnamate; at 10 mM-L-lactate a considerable portion of transport could not be inhibited. 3. Initial rates of L-lactate and pyruvate uptake in the presence of 5 mM-alpha-cyano-4-hydroxycinnamate were linearly related to the concentration of the monocarboxylate and probably represented diffusion of the free acid. The inhibitor-sensitive component of uptake obeyed Michaelis-Menten kinetics, with Km values for L-lactate and pyruvate of 2.3 and 0.066 mM respectively. 4. Pyruvate and D-lactate inhibited the transport of L-lactate, with Ki values (competitive) of 0.077 and 6.6 mM respectively; the Ki for pyruvate was very similar to its Km for transport. The Ki for alpha-cyano-4-hydroxycinnamate as a non-competitive inhibitor was 0.042 mM. 5. These results indicate that L-lactate, D-lactate and pyruvate share a common carrier in guinea-pig cardiac myocytes; the low stereoselectivity for L-lactate over D-lactate and the high affinity for pyruvate distinguish it from the carrier in erythrocytes and hepatocytes. The metabolic roles for this novel carrier in heart are discussed.  相似文献   

15.
The effect of dibutyryl cyclic AMP on the transport of α-methyl-d-glucoside and α-aminoisobutyric acid in separated tubules and purified brush border membranes from rabbit kidney was investigated using a rapid filtration procedure. Dibutyryl cyclic AMP stimulated the uptake of α-methyl-d-glucoside and α-aminoisobutyric acid by separated renal tubules in agreement with prior studies utilizing renal slices (Rea, C. and Segal, S. (1973) Biochim. Biophys. Acta 311, 615–624; Weiss, I.W., Morgan, K. and Phang, J.M. (1972) J. Biol. Chem. 247, 760–764). However, in contrast to previous reports, no preincubation of the tissue with dibutyryl cyclic AMP was required for stimulation of transport to be manifest. Dibutyryl cyclic AMP stimulated oxygen consumption by separated tubules suggesting that stimulation of transport may occur by a linkage with renal oxidative metabolism. Dibutyryl cyclic AMP increased the uptake of α-aminoisobutyric acid into purified renal brush border membranes. However the uptakes of α-methyl-d-glucoside, proline, leucine and phosphate into brush border membranes were significantly inhibited.  相似文献   

16.
Summary Mono-, dicarboxylic acid-, andd-glucose transport were measured in brush border vesicles from renal cortex after treatment with reagents known to modify terminal amino, lysyl, -amino, guanidino, serine/threonine, histidyl, tyrosyl, tryptophanyl and carboxylic residues. All three sodium-coupled cotransport systems proved to possess sulfhydryl (and maybe tryptophanyl sulfhydryl, disulfide, thioether and tyrosyl) residues but not at the substrate site or at the allosteric cavity for the Na coion. Histidyl groups seem to be located in the active site of the dicarboxylic transporter in that the simultaneous presence of Na and succinate protects the transporter against the histidyl specific reagent diethylpyrocarbonate. Lithium, which specifically competes for sodium sites in the dicarboxylic acid transporter, substantially blocked the protective effect of Na and succinate. Hydroxylamine specifically reversed the covalent binding of diethylpyrocarbonate to the succinate binding site. The pH dependence of the Na/succinate cotransport is consistent with an involvement of histidyl and sulfhydryl residues. We conclude that a histidyl residue is at, or is close to, the active site of the dicarboxylate transporter in renal brush border membranes.  相似文献   

17.
The substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters was determined using brush border membrane vesicles and CHO cell lines permanently expressing the Na(+)/bile acid cotransporters from rabbit ileum or rabbit liver. The hepatic transporter showed a remarkably broad specificity for interaction with cholephilic compounds in contrast to the ileal system. The anion transport inhibitor diisothiocyanostilbene disulfonate (DIDS) is a strong inhibitor of the hepatic Na(+)/bile acid cotransporter, but does not show any affinity to its ileal counterpart. Inhibition studies and uptake measurements with about 40 different bile acid analogues differing in the number, position, and stereochemistry of the hydroxyl groups at the steroid nucleus resulted in clear structure;-activity relationships for the ileal and hepatic bile acid transporters. The affinity to the ileal and hepatic Na(+)/bile acid cotransport systems and the uptake rates by cell lines expressing those transporters as well as rabbit ileal brush border membrane vesicles is primarily determined by the substituents on the steroid nucleus. Two hydroxy groups at position 3, 7, or 12 are optimal whereas the presence of three hydroxy groups decreased affinity. Vicinal hydroxy groups at positions 6 and 7 or a shift of the 7-hydroxy group to the 6-position significantly decreased the affinity to the ileal transporter in contrast to the hepatic system. 6-Hydroxylated bile acid derivatives are preferred substrates of the hepatic Na(+)/bile acid cotransporter. Surprisingly, the 3alpha-hydroxy group being present in all natural bile acids is not essential for high affinity interaction with the ileal and the hepatic bile acid transporter. The 3alpha-hydroxy group seems to be necessary for optimal transport of a bile acid across the hepatocyte canalicular membrane. A modification of bile acids at the 3-position therefore conserves the bile acid character thus determining the 3-position of bile acids as the ideal position for drug targeting strategies using bile acid transport pathways.  相似文献   

18.
L-Carnitine transport by rat renal brush border membrane vesicles was stimulated by a Na+ gradient (extravesicular greater than intravesicular). Total carnitine entry was 2.7 and 3.2 times higher at 15 S in the presence of a 100 mM NaCl gradient than when the vesicles were incubated isoosmotically in buffered 100 mM KCl or buffered mannitol, respectively. Specific carnitine transport (total entry minus contribution from diffusion) was stimulated 3.6- and 5.7-fold, respectively. An "overshoot" was observed for total carnitine entry in the presence of a Na+ gradient but not in the presence of a K+ gradient or in the absence of an ion gradient. L-Carnitine transport was saturable. KT and Vmax for total carnitine transport were 0.11 mM and 11.6 pmol S-1 mg protein-1, respectively, and for Na+-gradient-dependent carnitine transport, 0.055 mM and 5.09 pmol S-1 mg protein-1, respectively. The transport process was structure-specific for a quaternary nitrogen and carboxyl groups attached by a 4- to 6-carbon chain, but without other charged functional groups. Other evidence for a carrier-mediated process included trans-stimulation of transport by intravesicular carnitine and a peak of activity at near physiological temperature. Kinetic data derived from this study, coupled with data from previous physiological studies from this laboratory, suggests that carnitine transport by the brush border membrane is not limiting for carnitine reabsorption. Dietary carnitine (1% of diet for 10 days) reduced by 52% the rate of carnitine transport across the brush border membrane in vitro, without affecting rates of D-glucose, L-lysine, L-glutamic acid, or L-alanine transport. Down-regulation of carnitine transport may prevent excessive or toxic accumulation of L-carnitine in renal tubular cells exposed to high extracellular carnitine concentrations.  相似文献   

19.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

20.
Human jejunal brush border folate conjugase (EC 3.4.22.-) was partially purified and characterized. Three drugs known to be associated with clinical folate deficiency were tested for inhibition of the partially purified enzyme. Using jejunal mucosa from obese patients undergoing intestinal bypass surgery, brush border folate conjugase was purified 50-80-fold by centrifugation, Triton X-100 solubilization and DEAE-Sephadex and Sephacryl S-200 chromatography. Using synthetic pteroyldiglutamyl[14C]glutamate as substrate, the enzyme was found to have a pH optimum of 6.5 and an apparent Km of 1.6 micro M. Incubation of the enzyme with synthetic pteroyl[14C]glutamylhexaglutamate resulted in a spectrum of shorter-chain 14C-labeled pteroylglutamates at 60 min. Pteroyl[14C]glutamate was the major product at 120 min, with quantitative recovery of free glutamate in the incubation medium. Salicylazosulfapyridine was a competitive inhibitor of the enzyme (Ki = 0.13 mM), while ethanol, diphenylhydantoin and salicylazosulfapyridine metabolites had no effect. These data suggest that brush border folate conjugase is an exopeptidase which progressively hydrolyzes glutamyl units from pteroylpolyglutamate, leaving pteroylmonoglutamate as the folate form available for intestinal transport. Inhibition of brush border folate conjugase by salicylazosulfapyridine provides a mechanism for folate malabsorption and deficiency in chronic users of this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号