首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precursor of platelet membrane glycoprotein IIb (GPIIb) undergoes endoproteolytic cleavage into heavy and light chains post-translation. Endoproteolysis occurs within a 17-amino acid stretch of the precursor that contains 4 arginine residues, 3 in dibasic sequences [Lys-Arg (855-856) and Arg-Arg (858-859)] and a single arginine at 871. To determine the site of GPIIb cleavage and its role in the function of the glycoprotein IIb/IIIa heterodimer, we mutated arginine 856, the di-arginine sequence 858-859, and arginine 871 and coexpressed the mutants with glycoprotein IIIa (GPIIIa) in COS-1 cells. Each GPIIb mutant formed recombinant GPIIb-IIIa heterodimers, but mutants lacking arginine at 856 or 858-859 failed to undergo cleavage. Nevertheless, heterodimers containing the uncleaved GPIIb were expressed on the cell surface. Because endoproteolysis most often occurs after arginines in dibasic sequences, we next expressed GPIIb mutants containing lysine at 856 or aspartic acid at 855 with GPIIIa. Both mutants were cleaved and surface-expressed, indicating that the dibasic sequence at 858-859, but not at 855-856, is required for GPIIb cleavage. Lastly, we tested the function of GPIIb-IIIa containing uncleaved GPIIb by measuring adhesion of transfected cells to immobilized fibrinogen. We found no difference in the adhesion of cells expressing either wild-type or mutant GPIIb, indicating GPIIb-IIIa heterodimers containing uncleaved GPIIb maintain their ability to interact with fibrinogen.  相似文献   

2.
Endoproteolytic cleavage of the glycoprotein precursor to the mature SU and TM proteins is an essential step in the maturation of retroviral glycoproteins. Cleavage of the precursor polyprotein occurs at a conserved, basic tetrapeptide sequence and is carried out by a cellular protease. The glycoprotein of the human immunodeficiency virus type 1 contains two potential cleavage sequences immediately preceding the N terminus of the TM protein. To determine the functional significance of these two potential cleavage sites, a series of mutations has been constructed in each site individually, as well as in combinations that altered both sites simultaneously. A majority of the mutations in either potential cleavage site continued to allow efficient cleavage when present alone but abrogated cleavage of the precursor when combined. Despite being transported efficiently to the cell surface, these cleavage-defective glycoproteins were unable to initiate cell-cell fusion and viruses containing them were not infectious. Viruses that contained glycoproteins with a single mutation, and that retained the ability to be processed, were capable of mediating a productive infection, although infectivity was impaired in several of these mutants. Protein analyses indicated that uncleaved glycoprotein precursors were inefficiently incorporated into virions, suggesting that cleavage of the glycoprotein may be a prerequisite to incorporation into virions. The substitution of a glutamic acid residue for a highly conserved lysine residue in the primary cleavage site (residue 510) had no effect on glycoprotein cleavage or function, even though it removed the only dibasic amino acid pair in this site. Peptide sequencing of the N terminus of gp41 produced from this mutant glycoprotein demonstrated that cleavage continued to take place at this site. These results, demonstrating that normal cleavage of the human immunodeficiency virus type 1 glycoprotein can occur when no dibasic sequence is present at the cleavage site, raise questions about the specificity of the cellular protease that mediates this cleavage and suggest that cleavage of the glycoprotein is required for efficient incorporation of the glycoprotein into virions.  相似文献   

3.
E O Freed  D J Myers    R Risser 《Journal of virology》1989,63(11):4670-4675
The envelope glycoproteins of the human immunodeficiency virus (HIV) type 1 are synthesized as a precursor molecule, gp160, which is cleaved to generate the two mature envelope glycoproteins, gp120 and gp41. The cleavage reaction, which is mediated by a host protease, occurs at a sequence highly conserved in retroviral envelope glycoprotein precursors. We have investigated the sequence requirements for this cleavage reaction by introducing four single-amino-acid changes into the glutamic acid-lysine-arginine sequence immediately amino terminal to the site of cleavage. We have also examined the effects of these mutations on the syncytium formation induced by HIV envelope glycoproteins. Our results indicate that a glutamic acid to glycine change at gp120 amino acid 516, a lysine to isoleucine change at amino acid 517, and an arginine to lysine change at amino acid 518 affect neither gp160 cleavage nor syncytium formation. The results obtained with the arginine to lysine change at amino acid 518 differ significantly from the results obtained with the same mutation at the envelope precursor cleavage site of a murine leukemia virus (E. O. Freed, and R. Risser, J. Virol. 61:2852-2856, 1987). An arginine to threonine mutation at gp120 amino acid 518, the terminal residue of gp120, abolishes both gp160 cleavage and syncytium formation. These findings demonstrate that despite its highly conserved nature, the basic pair of amino acids at the site of gp160 cleavage is not absolutely required for proper envelope glycoprotein processing. This report also supports the idea that cleavage of gp160 is required for activation of the HIV envelope fusion function.  相似文献   

4.
We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position -1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position -3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens.  相似文献   

5.
We demonstrate that the precursor of the major light-harvesting chlorophyll a/b binding protein (LHCP of Photosystem II), encoded by a Type I gene, contains distinct determinants for processing at two sites during in vitro import into the chloroplast. Using precursors from both pea and wheat, it is shown that primary site processing, and release of a approximately 26-kD peptide, depends on an amino-proximal basic residue. Substitution of an arginine at position -4 resulted in an 80% reduction in processing, with the concomitant accumulation of a high molecular weight intermediate. Cleavage occurred normally when arginine was changed to lysine. The hypothesis that a basic residue is a general requirement for transit peptide removal was tested. We find that the precursors for the small subunit of Rubisco and Rubisco activase do not require a basic residue within seven amino acids of the cleavage site for maturation. In the wheat LHCP precursor, determinants for efficient cleavage at a secondary site were identified carboxy to the primary site, beyond what is traditionally called the transit peptide, within the sequence ala-lys-ala-lys (residues 38-41). Introduction of this sequence into the pea precursor, which has the residues thr-thr-lys-lys in the corresponding position, converted it to a substrate with an efficiently recognized secondary site. Our results indicate that two different forms of LHCP can be produced with distinct NH2-termini by selective cleavage of a single precursor polypeptide.  相似文献   

6.
We have recently demonstrated that the Arg-X-Lys/Arg-Arg sequence is a signal for precursor cleavage catalyzed by furin, a mammalian homologue of the yeast precursor-processing endoprotease Kex2, within the constitutive secretory pathway. In this study, we further examined sequence requirements for the constitutive precursor cleavage by expression of various prorenin mutants with amino acid substitutions around the native Lys-Arg cleavage site in Chinese hamster ovary cells. The results delineate the following sequence rules that govern the constitutive precursor cleavage. (a) A basic residue (Lys or Arg) at the 4th (position -4) or 6th (position -6) residue upstream of the cleavage site besides basic residues at positions -1 and -2 is necessary. (b) At position -2, a Lys residue is more preferable than Arg. (c) At position -4, an Arg residue is more preferable than Lys. (d) At position 1, a hydrophobic aliphatic amino acid is not suitable.  相似文献   

7.
The relationship between the length of the connecting peptide in a paramyxovirus F0 protein and cleavage of F0 into the F1 and F2 subunits has been examined by constructing a series of mutant F proteins via site-directed mutagenesis of a cDNA clone encoding the simian virus 5 F protein. The mutant F proteins had one to five arginine residues deleted from the connecting peptide. The minimum number of arginine residues required for cleavage-activation of the simian virus 5 F0 protein by host cell proteases was found to be four. F proteins with two or three arginine residues in the connecting peptide were not cleaved by host cell proteases but could be cleaved by exogenously added trypsin. The mutant F protein possessing a connecting peptide consisting of one arginine residue was not cleaved by trypsin. The altered F proteins were all transported to the infected-cell plasma membrane as shown by cell surface immunofluorescence or cell surface trypsinization. However, the only mutant F protein found to be biologically active as detected by syncytium formation was the F protein which has four arginine residues at the cleavage site. The results presented here suggest that in the paramyxovirus F protein the number of basic amino acid residues in the connecting peptide is important for cleavage of the precursor protein by host cell proteases but is not the only structural feature involved. In addition, the data indicate that cleavage of F0 into F1 and F2 does not necessarily result in biological activity and that the connecting peptide may affect the local conformation of the F polypeptide.  相似文献   

8.
The Marek's disease virus (MDV) glycoprotein B (gB) precursor, gp100, is proteolytically cleaved into two disulfide-linked subunits, gp60 and gp49. In the gB homologs of most other herpesviruses, a tetrapeptide, Arg-Xaa-Arg-Arg, is immediately upstream from the predicted cleavage site. We have investigated the specificity of the proteolytic cleavage in gplOO by introducing mutations within its predicted cleavage site (Arg-Leu-Arg-Arg) and expressed these mutants in recombinant fowlpox virus (FPV). The results show that all three Arg residues at the predicted cleavage site play an important role in the specific proteolytic cleavage of gp100. Furthermore, we demonstrated that the cleavage of gplOO is not necessary for transport of gB to the cell surface.  相似文献   

9.
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.  相似文献   

10.
We have investigated the specificity of the proteolytic cleavage of the Rous sarcoma virus glycoprotein precursor by introducing two mutations into the putative cleavage region (Arg-Arg-Lys-Arg). We show that neither a deletion of the cleavage sequence nor a glutamic acid for lysine substitution altered intracellular transport or surface expression of the env gene products. However, both the four-amino-acid deletion and the glutamic acid substitution block processing of the env precursor. Susceptibility of the glutamic acid-substituted env precursor to proteases indicated that tertiary protein structure was unaffected. While inhibitor experiments suggested that more than one endopeptidase might be capable of mediating the proteolytic cleavage, the results presented here point to the presence in the Golgi apparatus of a novel endopeptidase, required for retroviral glycoprotein cleavage, that has a high specificity for lysine-containing peptides.  相似文献   

11.
The precursor protein p62 of the prototype alphavirus Semliki Forest virus (SFV) undergoes during transport to the cell surface a proteolytic cleavage to form the mature envelope glycoprotein E2. To investigate the biological significance of this cleavage event, single amino acid substitutions were introduced at the cleavages site through mutagenesis of cDNA corresponding to the structural region of the SFV genome. The phenotypes of the cleavage site mutants were studied in BHK cells by using recombinant vaccinia virus vectors. Nonconservative substitutions completely abolished p62 cleavage. Uncleaved p62 was transported with normal kinetics to the cell surface, where it became accessible to low concentrations of exogenous trypsin. The proteolytic cleavage of envelope glycoprotein precursors has been shown to activate the membrane fusion potential of viral spikes in several virus families. Here we demonstrate that the fusion function of the SFV spike is activated by the cleavage of p62. Cleavage-deficient p62 expressed at the cell surface did not function in low-pH-triggered (pH 5.5) cell-cell membrane fusion; however, cleavage of the mutated p62 with exogenous trypsin restored the fusion function. We discuss a model for SFV assembly and fusion where p62 cleavage plays a crucial role in the stability of the multimeric association of the viral envelope glycoproteins.  相似文献   

12.
The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out.  相似文献   

13.
In Bacillus stearothermophilus ornithine acetyltransferase is a bifunctional enzyme, catalyzing the first and the fifth steps of arginine biosynthesis; it follows a ping-pong kinetic mechanism. A single chain precursor protein is cleaved between the alanine and threonine residues in a highly conserved ATML sequence leading to the formation of alpha and beta subunits that assemble into a heterotetrameric 2alpha2beta molecule. The beta subunit has been shown to form an acetylated intermediate in the course of the transacetylation reaction. The present data show that the precursor protein synthesized in vitro or in vivo undergoes a self-catalyzed cleavage involving an invariant threonine (Thr-197). Using site-directed mutagenesis T197G, T197S, and T197C derivatives have been generated. The T197G substitution abolishes both precursor protein cleavage and catalytic activity, whereas T197S and T197C substitutions reduce precursor cleavage and catalytic activity in the order Thr-197 (wild type) --> Ser-197 --> Cys-197. A mechanism is proposed in which Thr-197 plays a crucial role in the autoproteolytic cleavage of ornithine acetyltransferase.  相似文献   

14.
The stable signal peptide (SSP) of the lymphocytic choriomeningitis virus surface glycoprotein precursor has several unique characteristics. The SSP is unusually long, at 58 amino acids, and contains two hydrophobic domains, and its sequence is highly conserved among both Old and New World arenaviruses. To better understand the functions of the SSP, a panel of point and deletion mutants was created by in vitro mutagenesis to target the highly conserved elements within the SSP. We were also able to confirm critical residues required for separate SSP functions by trans-complementation. Using these approaches, it was possible to resolve functional domains of the SSP. In characterizing our SSP mutants, we discovered that the SSP is involved in several distinct functions within the viral life cycle, beyond translocation of the viral surface glycoprotein precursor into the endoplasmic reticulum lumen. The SSP is required for efficient glycoprotein expression, posttranslational maturation cleavage of GP1 and GP2 by SKI-1/S1P protease, glycoprotein transport to the cell surface plasma membrane, formation of infectious virus particles, and acid pH-dependent glycoprotein-mediated cell fusion.  相似文献   

15.
16.
In the generation of flavivirus particles, an internal cleavage of the envelope glycoprotein prM by furin is required for the acquisition of infectivity. Unlike cleavage of the prM of other flaviviruses, cleavage of dengue virus prM is incomplete in many cell lines; the partial cleavage reflects the influence of residues at furin nonconsensus positions of the pr-M junction, as flaviviruses share basic residues at positions P1, P2, and P4, recognized by furin. In this study, viruses harboring the alanine-scanning and other multiple-point mutations of the pr-M junction were generated, employing a dengue virus background that exhibited 60 to 70% prM cleavage and a preponderance of virion-sized extracellular particles. Analysis of prM and its cleavage products in viable mutants revealed a cleavage-suppressive effect at the conserved P3 Glu residue, as well as the cleavage-augmenting effects at the P5 Arg and P6 His residues, indicating an interplay between opposing modulatory influences mediated by these residues on the cleavage of the pr-M junction. Changes in the prM cleavage level were associated with altered proportions of extracellular virions and subviral particles; mutants with reduced cleavage were enriched with subviral particles and prM-containing virions, whereas the mutant with enhanced cleavage was deprived of these particles. Alterations of virus multiplication were detected in mutants with reduced prM cleavage and were correlated with their low specific infectivities. These findings define the functional roles of charged residues located adjacent to the furin consensus sequence in the cleavage of dengue virus prM and provide plausible mechanisms by which the reduction in the pr-M junction cleavability may affect virus replication.  相似文献   

17.
Membrane fusion caused by measles virus (MV) is a function of the fusion (F) protein. This process is essential for penetration into the host cell and subsequent initiation of the virus replicative cycle. The biological activity of the MV F protein is generated by endoproteolytic cleavage of a precursor protein (F0) into a large F1 subunit and a smaller F2 subunit held together by disulfide bonds. The cleavage site consists of a cluster of five basic amino acids (amino acids 108 to 112) within the predicted primary structure of the F protein. To investigate the role of the arginine residue at the carboxy terminus of the F2 subunit (arginine 112), site-directed mutagenesis was used to construct a cleavage mutant of the MV F protein in which this arginine residue was changed to a leucine residue. The mutated F gene, encoding four out of the five basic amino acids at the cleavage site, was inserted into the genome of vaccinia virus. The resulting recombinant virus was used to study expression of the mutant F protein in infected cells. Analysis of the Leu-112 mutant protein made in infected cells demonstrated that this single-amino-acid substitution resulted in a reduced rate of transport of the mutant protein to the cell surface, despite its efficient cleavage to yield F1 and F2 subunits. However, the electrophoretic mobilities of the Leu-112 polypeptides suggested that the protein was cleaved incorrectly. This aberrant cleavage appears to have abolished the ability of the F protein to cause syncytium formation. The data indicate that the arginine 112 residue is critical for the correct proteolytic cleavage that is required for the membrane fusion activity of the MV F protein.  相似文献   

18.
Protein sequence requirements for cleavage of the signal peptide from the Rous sarcoma virus glycoprotein have been investigated through the use of deletion mutagenesis. The phenotypes of these mutants have been characterized by expression of the cloned, mutated env genes in CV-1 cells using a late replacement SV40 vector. The deletion mutations were generated by Ba131 digestion at the XhoI site located near the 5' end of the coding sequence for the structural protein gp85, which is found at the amino terminus of the precursor glycoprotein, Pr95. The results of experiments with three mutants (X1, X2, and X3) are presented. Mutant X1 has a 14 amino acid deletion encompassing amino acids 4-17 of gp85, which results in the loss of one potential glycosylation site. In mutants X2 and X3 the amino terminal nine and six amino acids, respectively, of gp85 are deleted. During the biosynthesis of all three mutant polypeptides, the signal peptide is efficiently and accurately cleaved from the nascent protein, even though in mutants X2 and X3 the cleavage site itself has been altered. In these mutants the alanine/aspartic acid cleavage site has been mutated to alanine/asparagine and alanine/glutamine, respectively. These results are consistent with the concept that sequences C-terminal to the signal peptidase site are unimportant in defining the site of cleavage in eucaryotes. Mutants X2 and X3 behave like wild-type with respect to protein glycosylation, palmitic acid addition, cleavage to gp85 and gp37, and expression on the cell surface. Mutant X1, on the other hand, is defective in intracellular transport. Although it is translocated across the rough endoplasmic reticulum and core-glycosylated, its transport appears to be blocked at an early Golgi compartment. No terminal glycosylation of the protein, cleavage of the precursor protein to the mature products, or expression on the cell surface is observed. The deletion in X1 thus appears to destroy signals required for export to the cell surface.  相似文献   

19.
The infectivity of flavivirus particles depends on a maturation process that is triggered by the proteolytic cleavage of the precursor of the M protein (prM). This activation cleavage is naturally performed by ubiquitous cellular proteases of the furin family, which typically recognize the multibasic sequence motif R-X-R/K-R. Previously, we demonstrated that a tick-borne encephalitis virus (TBEV) mutant with an altered cleavage motif, R-X-R, produced immature, noninfectious particles that could be activated by exogenous trypsin, which cleaves after single basic residues. Here, we report the adaptation of this mutant to chymotrypsin, a protease specific for large, hydrophobic amino acid residues. Using selection pressure in cell culture, two different mutations conferring a chymotrypsin-dependent phenotype were identified. Surprisingly, one of these mutations (Ser85Phe) occurred three positions upstream of the natural cleavage site. The other mutation (Arg89His) arose at the natural cleavage position but involved a His residue, which is not a typical chymotrypsin cleavage site. Efficient cleavage of protein prM and activation by the heterologous protease were confirmed using various recombinant TBEV mutants. Mutants with only the originally selected mutations exhibited unimpaired export kinetics and were genotypically stable during at least six cell culture passages. However, in contrast to the wild-type virus or trypsin-dependent mutants, chymotrypsin-dependent mutants were not neurovirulent in suckling mice. Our results demonstrate that flaviviruses with altered protease specificities can be generated and suggest that this approach can be used for the construction of viral mutants or vectors that can be activated on demand and have restricted tissue tropism and virulence.  相似文献   

20.
The kinetics of cleavage of pr92gp, the precursor of the two glycoproteins of Rous sarcoma virus gp85 and gp35, were followed. Viral glycoproteins were detected by immunoprecipitation with anti-gp85 and anti-gp35 serum. It could be shown in pulse-chase experiments that little or no intracellular cleavage of the precursor took place during the time in which the majority of newly synthesized viral glycoprotein was exported from the cells. Soon after its synthesis, however, pr92gp underwent some modification that made it migrate slightly faster on sodium dodecyl sulfate-polyacrylamide gels. Under steady state conditions the precursor was shown to be the predominant form of intracellular viral glycoprotein. Virus which was harvested every 2 min from infected cells prelabeled for 90 min with [3H]mannose contained mostly uncleaved and only a little mature glycoprotein. By incubation of this freshly released virus in serum-free buffer, the majority of the glycoprotein precursor could be cleaved into mature gp85 and gp35. Virus harvested every 10 min contained only mature glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号