首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies elicited in rabbits against chicken slow skeletal anterior latissimus dorsi and ventricular myosin were analyzed by double immunodiffusion for their ability to react with homologous and heterologous antigen at different stages of immunization (1--12 months). Each anti myosin antiserum formed a single, strong precipitin line with its immunogen after short time of immunization. This reaction was specific for myosin heavy chains as determined by GEDELISA (gel electrophoresis derived enzyme lined immunosorbent assay) test. In rabbits injected with ventricular myosin after long time of immunization a second, fainter precipitin line has generally been observed. The antigenic determinants responsible for this precipitin line have been localized on the light myosin subunits. By comparing the two types of anti myosin antisera with heterologous antigen we have obtained evidence for partial immunological cross-reactivity between slow skeletal and ventricular muscle myosins. In particular, all anti ventricular myosin antisera displayed a marked immunological reactivity with anterior latissimus dorsi myosin whereas most of anti anterior latissimus dorsi myosin antisera showed absence of reciprocity. By means of immunofluorescence and immunoabsorption techniques both common and unique slow skeletal and ventricular antigenic determinants have been demonstrated.  相似文献   

2.
An antibody to chicken ventricular myosin was found to cross-react by enzyme immunoassay with myosin heavy chains from embryonic chicken pectorials, but not with adult skeletal myosins. This antibody, which was previously shown to label cultured muscle cells from embryonic pectoralis (Cantini et al., J cell biol 85 (1981) 903), was used to investigate by indirect immunofluorescence the reactivity of chicken skeletal muscle cells differentiating in vivo during embryonic development and muscle regeneration. Muscle fibers in 11-day old chick embryonic pectoralis and anterior latissimus dorsi muscles showed a differential reactivity with this antibody. Labelled fibers progressively decreasgd in number during subsequent stages and disappeared completely around hatching. Only rare small muscle fibers, some of which had the shape and location typical of satellite elements, were labelled in adult chicken muscle. A cold injury was produced with dry ice in the fast pectoralis and the slow anterior latissimys dorsi muscles of young chickens. Two days after injury a number of labelled cells was first seen in the intermediate region between the outer necrotic area and the underlying uninjured muscle. These muscle cells rapidly increased in number and size, thin myotubes were seen after 3 days and by 4–5 days a superficial layer of brightly stained newly formed muscle fibers was observed at the site of the injury. Between one and two weeks after the lesion the intensity of staining of regenerated fibers progressively decreased as their size further increased. These findings indicate that an embryonic type of myosin heavy chain is transitorily expressed during muscle regeneration.  相似文献   

3.
Types of myosin light chains and tropomyosins present in various regions and at different developmental stages of embryonic and posthatched chicken breast muscle (pectoralis major) have been characterized by two-dimensional gel electrophoresis. In the embryonic muscle all areas appear to accumulate both slow and fast forms of mysoin light chains in addition to α and β forms of tropomyosin. During development regional differences in myosin and tropomyosin expression become apparent. Slow myosin subunits become gradually restricted to areas of the anterior region of the muscle and finally become localized to a small red strip found on its anterior deep surface. This red region is characterized by the presence of slow and fast myosin light chains, α-fast, α-slow, and β-tropomyosin. In all other areas of the muscle examined only fast myosin light chains, β-tropomyosin and the α-fast form of tropomyosin, are found. In addition, β-tropomyosin also gradually becomes lost in the posterior regions of the developing breast muscle. In the adult, the red strip area represents less than 1% of the total pectoralis major mass and of the myosin extracted from this area approximately 15% was present as an isozyme that comigrated on nondenaturing gels with myosin from a slow muscle (anterior latissimus dorsi). The red region accumulates therefore fast as well as slow muscle myosin. Thus while the adult chicken pectoralis major is over 99% fast white muscle, the embryonic muscle displays a significant and changing capacity to accumulate both fast and slow muscle peptides.  相似文献   

4.
J Gagnon  T T Kurowski  R Zak 《FEBS letters》1989,250(2):549-555
We have used the overload-induced growth of avian muscles to study the assembly of the newly synthesized myosins which were separated by non-denaturing pyrophosphate-polyacrylamide gel electrophoresis. Using this model, we have observed the appearance of fast-like isomyosins in polyribosomes prepared from slow anterior latissimus dorsi muscle after 72 h of overload. These new isoforms comigrating with native myosin from fast posterior latissimus dorsi muscle were not yet present in cellular extracts from the same muscle. The in vitro translation system utilizing muscle specific polyribosomes directs the synthesis of the corresponding myosin isoforms. Under denaturing conditions, myosin heavy chains and light chains dissociate to the expected subunit composition of each specific isoform. The synthesis and assembly of native myosin on polyribosomes indicate that myosin exists as a single mature protein prior to the incorporation in the thick filament.  相似文献   

5.
To investigate whether immunocytochemical localization of muscle-specific aldolase can be used for fiber phenotype determination, we produced specific antibodies against the enzyme and studied its distribution in adult chicken skeletal muscles by indirect immunofluorescence microscopy. Monoclonal antibodies against the myosin heavy chains of fast-twitch (MF-14) and slow-tonic (ALD-58) muscle fibers were also used to correlate aldolase levels with the fiber phenotype. The goat anti-aldolase antibody was found to be specific for the A form of aldolase, as evidenced by sodium dodecyl sulfate gel electrophoresis, immunotitration experiments, and immunoblot analysis. The antibody reacted strongly with the fast-twitch myofibers of normal pectoralis and posterior latissimus dorsi muscles; the phenotype of these muscle fibers was confirmed by a positive immunofluorescent reaction after incubation with MF-14 antibody. By contrast, the slow-tonic myofibers of normal anterior latissimus dorsi, which react positively with ALD-58 antibody, reacted weakly with anti-aldolase antibodies. In denervated chicken muscles, reaction to anti-aldolase antibodies was markedly reduced in fast-twitch fibers, although reaction to MF-14 was not diminished. By contrast, in dystrophic muscle, fast-twitch fibers showed reduced reactivity to anti-aldolase and marked to moderate reduction in MF-14 reactivity. Our results show that: (a) in normal muscles, reactivity to anti-aldolase matches the phenotype obtained by using anti-fast or anti-slow myosin heavy chain antibodies, and therefore can serve to identify mature fibers as fast or slow; and (b) in denervated or dystrophic muscles, the intracellular expressions of aldolase and fast-twitch myosin heavy chains are regulated independently.  相似文献   

6.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

7.
It has been demonstrated that embryonic chicken gizzard smooth muscle contains a unique embryonic myosin light chain of 23,000 mol wt, called L23 (Katoh, N., and S. Kubo, 1978, Biochem. Biophys. Acta, 535:401-411; Takano-Ohmuro, H., T. Obinata, T. Mikawa, and T. Masaki, 1983, J. Biochem. (Tokyo), 93:903-908). When we examined myosins in developing chicken ventricular and pectoralis muscles by two-dimensional gel electrophoresis, the myosin light chain (Le) that completely comigrates with L23 was detected in both striated muscles at early developmental stages. Two monoclonal antibodies, MT-53f and MT-185d, were applied to characterize the embryonic light chain Le of striated muscles. Both monoclonal antibodies were raised to fast skeletal muscle myosin light chains; the former antibody is specific to fast muscle myosin light chains 1 and 3, whereas the latter recognizes not only fast muscle myosin light chains but also the embryonic smooth muscle light chain L23. The immunoblots combined with both one- and two-dimensional gel electrophoresis showed that Le reacts with MT-185d but not with MT-53f. These results strongly indicate that Le is identical to L23 and that embryonic chicken skeletal, cardiac, and smooth muscles express a common embryo-specific myosin light chain.  相似文献   

8.
Myosin types in cultured muscle cells   总被引:5,自引:2,他引:3       下载免费PDF全文
Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins.  相似文献   

9.
SOME PROPERTIES OF EMBRYONIC MYOSIN   总被引:10,自引:3,他引:7  
Myosins from the following sources were purified by diethylaminoethyl-Sephadex chromatography: moytubes grown in vitro for 7–8 days, prepared from pectoralis muscles of 10-day old embryos, and breast and leg muscles from 16-day old embryos. The adenosine triphosphatase activities of these myosins were close to that of adult m. pectoralis myosin. The light chains of the embryonic myosins had the same mobilities in sodium dodecyl sulfate electrophoresis as those in adult pectoralis muscle myosin and were clearly distinguishable from those in myosin from tonic muscle m. latissimus dorsi anterior. The fastest light chain in embryonic muscle myosin—apparent mol wt 16,000—was present in smaller amounts than in adult myosin. The negative staining pattern of paracrystals of embryonic light meromyosin (LMM) was indistinguishable from that of adult fast muscle LMM. The significance of these results for differentiation of various muscle types has been discussed.  相似文献   

10.
Quantitation of myosin in muscle   总被引:3,自引:0,他引:3  
The amount of myosin per gram of cardiac and skeletal muscle was determined in sodium dodecyl sulfate-solubilized tissue homogenates by radioimmunoassay and by isotope dilution. In the rabbit ventricle, there was an average of 27 mg myosin/g wet wt of tissue. In chickens, the myosin content of typical "red" (anterior latissimus dorsi) and "white" (posterior latissimus dorsi) skeletal muscles was higher than that of ventricular muscle, averaging 36 and 48 mg/g of tissue, respectively. The stoichiometry of the heavy and light chains in cardiac myosin was also determined from the quantitative binding of 125I-labeled Coomassie blue to each subunit after separation of the subunits by sodium dodecyl sulfate-gel electrophoresis. With this procedure, we found that the combined light-chain subunits contributed 19% of the myosin mass. After adjustment for the light-chain contribution, the myosin heavy-chain content of the rabbit ventricle averaged 22 mg/g wet wt of tissue.  相似文献   

11.
Myosin heavy chains prepared from the pectoralis major and from the posterior latissimus dorsi of the same adult chicken exhibit different peptide maps when cleaved with Staphylococcus aureus V8 protease. These differences were observed at five different enzyme concentrations and in chickens of various strains. The cleavage pattern of pectoralis major myosin heavy chain from different adult chickens was always identical, as was that of posterior latissimus dorsi myosin heavy chain, demonstrating the reproducibility of the technique. However, when RNAs extracted from the pectoralis major and from the posterior latissimus dorsi were translated in a cell-free reticulocyte lysate, the myosin heavy chain encoded by pectoralis major RNA and the myosin heavy chain encoded by posterior latissimus dorsi RNA exhibited identical peptide maps. These results suggest that the different peptide maps of myosin heavy chains from the pectoralis major and posterior latissimus dorsi may arise from posttranslational modifications.  相似文献   

12.
Myosin and heavy meromyosin from ventricular, atrial, and skeletal muscle were purified and trinitrophenylated by 2,4,6-trinitrobenzene sulfonate. The trinitrophenylation reaction followed a complex kinetics consisting of a fast and slow reaction in all preparations studied. Reactive lysine residues were trinitrophenylated during the fast reaction with a concomitant decrease in K+ (EDTA)-activated ATPase and an increase in Mg2+-stimulated ATPase activities of myosin. The extent of increase in Mg2+-mediated ATPase was the highest with skeletal and the lowest with atrial myosin. The trinitrophenylation of the less reactive lysyl residues continued during the slow reaction. The rate constants of the reactions and the number of reactive lysine residues were evaluated by computer analyses of the trinitrophenylation curves. Two reactive lysine residues were found in skeletal and ventricular myosins while their number in atrial myosin was somewhat lower. The rate of trinitrophenylation in skeletal muscle myosin or heavy meromyosin was always higher than in the two cardiac myosin isozymes. Addition of KCl increased the trinitrophenylation of both highly reactive and slowly reactive lysyl residues in all of the three heavy meromyosins, however, the effect was more profound with cardiac heavy meromyosins. Addition of MgADP induced spectral changes in trinitrophenylated skeletal but not in cardiac myosins. Similar changes occurred in skeletal and to a lesser degree in ventricular heavy meromyosin, but no definite spectral changes were observed in atrial heavy meromyosin. The findings suggest that structural differences exist around the reactive lysyl residue in the head portion of the three myosins.  相似文献   

13.
It is well established that a rise in circulating thyroid hormone during the second half of chick embryo development significantly influences muscle weight gain and bone growth. We studied thyroid influence on differentiation in slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of embryos rendered hypothyroid by hypophysectomy or administration of an anti-thyroid drug. The expression of native myosins and myosin light chains (MLCs) was studied by electrophoretic analysis, and the myosin heavy chain (MHC) was characterized by immunohistochemistry. The first effects of hypothyroid status were observed at day 21 of embryonic development (stage 46 according to Hamburger and Hamilton). Analysis of myosin isoform expression in PLD muscles of hypothyroid embryos showed persistence of slow migrating native myosins and slow MLCs as well as inhibition of neonatal fast MHC expression, indicating retarded differentiation of this muscle. In ALD muscle, hypothyroidism maintained fast embryonic MHC and induced noticeable amounts of fast MLCs, thus delaying slow muscle differentiation. Our results suggest that thyroid hormones play a role in modulating the appearance of neonatal fast MHC and the disappearance of isomyosins transiently present during embryogenesis. However, T3 supplemental treatment would seem to compensate in part for the effects of hypothyroidism induced by hypophysectomy, suggesting that thyroid hormone might interfere with other factors also accounting for the observed effects.  相似文献   

14.
Changes in myosin isozymes during development of chicken breast muscle   总被引:1,自引:0,他引:1  
The patterns of myosin isozymes in embryonic and adult chicken pectoralis muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light chains and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, the predominant isozyme component in embryonic pectoralis myosin could be clearly distinguished from adult myosin isozymes. SDS-polyacrylamide gel electrophoresis indicated that the light chain composition of embryonic myosin was also different from that of adult myosin. The pattern of peptide fragments produced by myosin digestion with a-chymotrypsin differed significantly between embryonic and adult skeletal myosin. These results suggest that myosin in the embryonic pectoralis muscle is different in both light and heavy chain composition from myosin in the same adult tissue.  相似文献   

15.
Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle   总被引:4,自引:0,他引:4  
The application of a weight overload to the humerus of chickens induces a hypertrophy of anterior latissimus dorsi (ALD) muscle fibers. This growth is accompanied by a rapid and almost complete replacement of one slow-tonic myosin isoform, SM-1, by another slow-tonic isoform, SM-2. In addition, a population of small fibers appears mainly in extrafascicular spaces and, concurrently, three additional myosin bands are detected by gel electrophoresis. Five antibodies against myosin heavy chain (MHC) isoforms were selected as immunocytochemical probes to determine the cellular location and nature of these myosins. The antibodies react with ventricular, fast skeletal muscle and either SM-1 or SM-2, or both the slow-tonic MHCs. The antifast and antiventricular antibodies react with myosin present in the 10-day embryonic ALD muscle but do not react with myosin in posthatch ALD muscle. The small fibers in overloaded muscle contain a myosin isoform characteristically expressed during the embryonic stage of ALD muscle development and therefore are named nascent myofibers. Some of the nascent myofibers do not react with the antibody to both slow-tonic MHCs, indicating the lack of the normal adult slow-tonic myosins which are expressed in 10-day embryos. In order to explore the origin of the nascent fibers, an electron microscopic study was performed. Stereological analysis of the existing fibers shows a stimulation of numbers and sizes of satellite cells. In addition, the volume occupied by nonmuscle and undifferentiated cells increases dramatically. Myotube formation with incipient myofibrils is seen in extrafascicular spaces. These data suggest that new muscle fiber formation accompanies hypertrophy in overloaded chicken ALD muscle and the process may involve satellite cell migration.  相似文献   

16.
The tissue and developmental distribution of the various myosin subunits has been examined in bovine cardiac muscle. Electrophoretic analysis shows that a myosin light chain found in fetal but not in adult ventricular myosin is very similar and possibly identical to the light chain found in fetal or adult atrial and adult Purkinje fiber myosins. This light chain comigrates on two-dimensional gels with the bovine skeletal muscle embryonic light chain. Thus, this protein appears to be expressed only at early developmental stages in some tissues (cardiac ventricles, skeletal muscle) but at all stages in others (cardiac atria). The heavy chains of these myosins have been examined by one- and two-dimensional polypeptide mapping. The ventricular and Purkinje fiber heavy chains are indistinguishable. They are, however, different from the heavy chain found in cultured skeletal muscle myotubes, in contrast to the situation concerning the embryonic/atrial light chain.  相似文献   

17.
Phylogenetic studies of cardiac myosins from amphibia to mammals   总被引:1,自引:0,他引:1  
Comparison between pig atrial and ventricular myosins was performed on the light chains (using SDS-PAGE) and on the heavy chains (using Ca2+-ATPase measurements and NTCBA peptide mapping). Light chain composition of pig cardiac myosins was compared to three other species ones (frog, chicken and human). Up to birds, atrial and ventricular myosin light chain composition was identical whereas in mammals atrial and ventricular myosin light chain composition was different; likewise the heavy chains. Six cardiac myosin isoenzymes have been thus characterized. No correlation can be established between cardiac myosin light chain pattern and species evolution.  相似文献   

18.
By using immunoaffinity column chromatography slow (I) and fast (IIA, IIB) myosins were isolated from human (vastus lateralis) and rabbit (tibialis anterior, psoas and conoidal bundle) skeletal muscles. The peptide pattern revealed that slow (I) and fast (IIA, IIB) myosin heavy chains are quite distinct, as are those from pure slow (conoidal bundle) and fast (psoas) rabbit skeletal muscles. Unlike Billeter et al. (1981) the authors observed that fast human myosins were always associated with a small amount of slow myosin light chains. The fast myosins (IIA, IIB) from rabbit tibialis anterior muscle did not appear very distinct and contained only fast myosin light chains. These myosins were different from the IIB myosin from the psoas muscle. Ten per cent of the fibres revealed histochemically as fast IIA also reacted with an anti-slow myosin antibody. The classical histochemical techniques appear inadequate to demonstrate the existing differences among fibre types, but the monoclonal antibodies hold promise.  相似文献   

19.
Distribution of myosin isoenzymes among skeletal muscle fiber types.   总被引:17,自引:4,他引:13  
Using an immunocytochemical approach, we have demonstrated a preferential distribution of myosin isoenzymes with respect to the pattern of fiber types in skeletal muscles of the rat. In an earlier study, we had shown that fluorescein-labeled antibody against "white" myosin from the chicken pectoralis stained all the white, intermediate and about half the red fibers of the rat diaphragm, a fast-twitch muscle (Gauthier and Lowey, 1977). We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains. Antibodies capable of distinguishing between alkali 1 and alkali 2 type myosin were also used to localize these isoenzymes in the same fast muscle. We observed, by both direct and indirect immunofluorescence, that the same fibers which had reacted previously with antibodies against white myosin reacted with antibodies to the proteolytic subfragments and to the low molecular-weight subunits of myosin. These results confirm our earlier conclusion that the myosins of the reactive fibers in rat skeletal muscle are sufficiently similar to share antigenic determinants. The homology, furthermore, is not confined to a limited region of the myosin molecule, but includes the head and rod portions and all classes of light chains. Despite the similarities, some differences exist in the protein compositions of these fibers: antibodies to S1 did not stain the reactive (fast) red fiber as strongly as they did the white and intermediate fibers. Non-uniform staining was also observed with antibodies specific for A2 myosin; the fast red fiber again showed weaker fluorescence than did the other reactive fibers. These results could indicate a variable distribution of myosin isoenzymes according to their alkali-light chain composition among fiber types. Alternatively, there may exist yet another myosin isoenzyme which is localized in the fast red fiber. Those red fibers which did not react with any of the antibodies to pectoralis myosin, did react strongly with an antibody against myosin isolated from the anterior latissimus dorsi (ALD), a slow red muscle of the chicken. The myosin in these fibers (slow red fibers) is, therefore, distinct from the other myosin isoenzymes. In the rat soleus, a slow-twitch muscle, the majority of the fibers reacted only with antibody against ALD myosin. A minority, however, reacted with antiboddies to pectoralis as well as ALD myosin, which indicates that both fast and slow myosin can coexist within the same fiber of a normal adult muscle. These immunocytochemical studies have emphasized that a wide range of isoenzymes may contribute to the characteristic physiological properties of individual fiber types in a mixed muscle.  相似文献   

20.
Summary The fiber type composition of two fast muscles of the chicken, namely, adductor superficialis (AS) and pectoralis major (PM) was examined by the histochemical myosin ATPase staining and immunochemical techniques using monoclonal antibodies (McAbs). Two new McAbs produced against the myosin of the anterior latissimus dorsi (ALD) muscle of the chicken and named ALD-122 and ALD-83 were characterized to be specific for myosin heavy chain (MHC) and for myosin light chain-1 respectively. They were used in conjunction with previously reported McAbs specific for slow MHC (ALD-47), fast MHC (MF-14) and fast light chain-2 (MF-5). By the histochemical ATPase test most muscle fibers of AS and PM muscles reacted as IIA and IIB respectively. By immunofluorescent staining with the anti-MHC McAbs, ALD-122, and MF-14, the fibers of AS, muscle showed remarkable heterogeneity whereas PM muscle fibers reacted, uniformly. Differences in the myosin light chain composition of AS and PM muscles were also found by SDS-gel electrophoresis and immunoblot analysis with the anti-light chain McAb, ALD-83. The study clearly indicated that the histochemically homogenous (type IIA) AS muscle is composed of several subpopulations of fibers which differ in their myosin composition and that this heterogeneity of the muscle is not simply due to presence of variable amounts of slow myosin in its fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号