首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Females of many animal species are polyandrous, and there is evidence that they can control pre- and post-mating events. There has been a growing interest in consequences of polyandry for male and female reproductive success and offspring fitness, and its evolutionary significance. In several taxa, females exhibit mate choice both before and after mating and can influence the paternity of their offspring, enhancing offspring number and quality, but potentially countering male interests. Studying female mating biology and in particular post-copulatory female control mechanisms thus promises to yield insights into sexual selection and the potential of male-female coevolution. Here, we highlight the red flour beetle Tribolium castaneum (Herbst), a storage pest, as a model system to study polyandry, and review studies addressing the effects of polyandry on male sperm competitive ability and female control of post-mating events. These studies show that the outcome of sperm competition in the red flour beetle is influenced by both male and female traits. Furthermore, recent advances suggest that sexual conflict may have shaped reproductive traits in this species.  相似文献   

2.
Postcopulatory sexual selection occurs when sperm from multiple males occupy a female’s reproductive tract at the same time and is expected to generate strong selection pressures on traits related to competitive fertilization success. However, knowledge of competitive fertilization success mechanisms and characters targeted by resulting selection is limited, partially due to the difficulty of discriminating among sperm from different males within the female reproductive tract. Here, we resolved mechanisms of competitive fertilization success in the promiscuous flour beetle Tribolium castaneum. Through creation of transgenic lines with fluorescent-tagged sperm heads, we followed the fate of focal male sperm in female reproductive tracts while tracking paternity across numerous rematings. Our results indicate that a given male’s sperm persist and fertilize eggs through at least seven rematings. Additionally, the proportion of a male’s sperm in the bursa (the site of spermatophore deposition), which is influenced by both timing of female’s ejecting excess sperm and male size, significantly predicted paternity share in the 24 h following a mating. Contrary to expectation, proportional representation of sperm within the female’s specialized sperm-storage organ did not significantly predict paternity, though spermathecal sperm may play a role in fertilization when females do not have access to mates for longer time periods. We address the adaptive significance of the identified reproductive mechanisms in the context of T. castaneum’s unique mating system and ecology.  相似文献   

3.
Although female mate choice and male sperm competition have separately attracted much attention, few studies have addressed how precopulatory and postcopulatory episodes of sexual selection might interact to drive the evolution of male traits. In Photinus fireflies, females preferentially respond to males based on their bioluminescent courtship signals, and females gain direct benefits through male nuptial gifts acquired during multiple matings over several nights. We experimentally manipulated matings of P. greeni fireflies to test the hypothesis that postcopulatory paternity success might be biased toward males that are more attractive during courtship interactions. We first measured male courtship attractiveness to individual females using field behavioral assays. Females were then assigned to two double-mating treatments: (1) least attractive second male-females were first mated with their most attractive male, followed by their least attractive male, or (2) most attractive second male-females mated with males in reverse order. Larval offspring produced by each female following these double matings were genotyped using random amplified polymorphic DNA (RAPD) markers, and male paternity was determined. Contrary to prediction, firefly males that were more attractive to females based on their bioluminescent courtship displays subsequently showed significantly lower paternity, reflecting possible male trade-offs or sexual conflict. Differences in male paternity were not related to male body condition, testes or accessory gland mass, or to variation in female spermathecal size. Additionally, this study suggests that changes in phenotypic selection gradients may occur during different reproductive stages. These results indicate that it is crucial for future studies on sexual selection in polyandrous species to integrate both precopulatory and postcopulatory episodes to fully understand the evolution of male traits.  相似文献   

4.
In the fly Dryomyza anilis females have two kinds of sperm storage organs: one bursa copulatrix and three spermathecae (two spermathecae with a common duct form the doublet, and the third is a singlet spermathecal unit). At the beginning of a mating the male deposits his sperm in the bursa copulatrix. After sperm transfer the male taps the female''s abdomen with his claspers. This behaviour has been shown to increase the male''s fertilization success. After mating, the female discharges large quantities of sperm before oviposition. To find out where the sperm remaining in the female are stored, I counted the number of sperm in the droplet and in the female''s sperm storage organs after different types of mating. I carried out three mating experiments. In experiment 1, virgin females were mated with one male and the matings were interrupted either immediately after sperm transfer or after several tapping sequences. The results show that during male tapping more sperm moved into the singlet spermatheca. In addition, the total number of sperm correlated with sperm numbers in all sperm storage organs, and male size was positively related to the number of sperm remaining in the bursa. In experiment 2, females mated with several males. The number of sperm increased with increasing number of matings only in the doublet spermatheca. No increase in the number of sperm in the singlet spermatheca during consecutive matings suggests that sperm were replaced or did not reach this sperm storage organ. In experiment 3, virgin females were mated with a single male and half of them were allowed to lay eggs. The experiment showed that during egglaying, females primarily used sperm from their singlet spermatheca. The results from the three experiments suggest that sperm stored in the singlet spermatheca is central for male fertilization success and male tapping is related to sperm storage in the singlet spermatheca. The different female''s sperm storage organs in D. anilis may have separate functions during sperm storage as well as during sperm usage.  相似文献   

5.
In polyandrous mating systems, male fitness depends on success in premating, post-copulatory and offspring viability episodes of selection. We tracked male success across all of these episodes simultaneously, using transgenic Drosophila melanogaster with ubiquitously expressed green fluorescent protein (i.e. GFP) in a series of competitive and noncompetitive matings. This approach permitted us to track paternity-specific viability over all life stages and to distinguish true competitive fertilization success from differential early offspring viability. Relationships between episodes of selection were generally not present when paternity was measured in eggs; however, positive correlations between sperm competitive success and offspring viability became significant when paternity was measured in adult offspring. Additionally, we found a significant male × female interaction on hatching success and a lack of repeatability of offspring viability across a focal male's matings, which may underlay the limited number of correlations found between episodes of selection.  相似文献   

6.
The three orders of extant amphibians are Gymnophiona, Anura, and Urodela. Although all gymnophionans apparently have internal fertilization and many are viviparous, female sperm storage is unknown. Internal fertilization has convergently evolved in a few anurans, but females of just one species, Ascaphus truei, are known to possess oviductal sperm storage tubules (SSTs). The SSTs of A. truei are similar anatomically to such glands in squamate reptiles. This similarity is convergence due to similar functional adaptations and/or internal design constraints. In salamanders and newts (Urodela), absence of sperm storage in females is the ancestral condition (three families). In the derived condition, sperm storage occurs in cloacal glands called spermathecae, and their possession is a synapomorphy for females in the suborder Salamandroidea (seven families). Salamandroids are the only vertebrates with cloacal sperm storage glands. In this paper, a phenetic analysis of variation in spermathecal characters reveals patterns of convergence in certain spermathecal characters in unrelated taxa that breed in similar habitats. In the family Salamandridae, a role in sperm nutrition for the spermathecal epithelium is questioned, and the widespread occurrence of spermiophagy is related to other reproductive strategies. I propose how the packaging of sperm in structurally different types of spermathecae may influence male paternity.  相似文献   

7.
After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored. Using a large population of pedigreed females, we developed a simple test to determine whether there is additive genetic variation in female ability to bias paternity after a first, chosen, mating. We applied this method in the highly polyandrous Drosophila serrata, giving females the opportunity to successively mate with two males ad libitum. We found that despite high levels of polyandry (females mated more than once per day), the first mate choice was a significant predictor of male total reproductive success. Importantly, there was no detectable genetic variance in female ability to bias paternity beyond mate choice. Therefore, whether or not females can bias paternity before or after copulation, their role on the evolution of sexual male traits is likely to be limited to their first mate choice in D. serrata.  相似文献   

8.
There is currently much interest in the suggestion that females are capable of post-copulatory (or cryptic) choice for male genetic compatibility. Here, I investigate this idea using data from mixed-paternity litters of the common shrew (Sorex araneus). Females of this species are highly promiscuous and, in natural populations, regularly incur costs of inbreeding by mating with close relatives. Selection should therefore favour female ability for sperm selection on the basis of male relatedness. No evidence was found in support of this idea. Relative number of offspring sired within mixed paternity litters was not significantly correlated with genetic similarity of males to the female mated. Relative fertilization success was, however, significantly related to male epididymal sperm counts. I conclude that most variation in relative fertilization success of male common shrews can be explained in terms of sperm competition, and that females of this species may not be capable of sperm selection.  相似文献   

9.
Sexual selection is a major force driving the evolution of diverse reproductive traits. This evolutionary process is based on individual reproductive advantages that arise either through intrasexual competition or through intersexual choice and conflict. While classical studies of sexual selection focused mainly on differences in male mating success, more recent work has focused on the differences in paternity share that may arise through sperm competition or cryptic female choice whenever females mate with multiple males. Thus, an integrative view of sexual selection needs to encompass processes that occur not only before copulation (pre-mating), but also during copulation (peri-mating), as well as after copulation (post-mating), all of which can generate differences in reproductive success. By encompassing mechanisms of sexual selection across all of these sequential reproductive stages this review takes an integrative approach to sexual selection in Tribolium flour beetles (Coleoptera: Tenebrionidae), a particularly well-studied and economically important model organism. Tribolium flour beetles colonize patchily distributed grain stores, and juvenile and adult stages share the same food resources. Adults are highly promiscuous and female reproduction is distributed across an adult lifespan lasting approximately 1 year. While Tribolium males produce an aggregation pheromone that attracts both sexes, there appears to be little pre-mating discrimination among potential mates by either sex. However, recent work has revealed several peri-mating and post-mating mechanisms that determine how offspring paternity is apportioned among a female's mates. During mating, Tribolium females reject spermatophore transfer and limit sperm numbers transferred by males with low phenotypic quality. Although there is some conflicting evidence, male copulatory leg-rubbing appears to be associated with overcoming female resistance to insemination and does not influence a male's subsequent paternity share. Evidence suggests that Tribolium beetles have several possible post-mating mechanisms that they may use to bias paternity. Male sperm precedence has been extensively studied in Tribolium spp. and the related Tenebrio molitor, and several factors influencing male paternity share among a female's progeny have been identified. These include oviposition time, inter-mating interval, male strain/genotype, the mating regimen of a male's mother, male starvation, and tapeworm infection. Females exert muscular control over sperm storage, although there is no evidence to date that females use this to differentiate among mates. Females could also influence offspring paternity by re-mating with additional males, and T. castaneum females more readily accept spermatophores when they are re-mating with more attractive males. Additional work is needed to examine the possible roles played by both male and female accessory gland products in determining male paternity share. Sexual selection during pre-mating episodes may be reinforced or counteracted by peri- and post-copulatory selection, and antagonistic coevolution between the sexes may be played out across reproductive stages. In Tribolium, males' olfactory attractiveness is positively correlated with both insemination success and paternity share, suggesting consistent selection across different reproductive stages. Similar studies across sequential reproductive stages are needed in other taxa to provide a more integrative view of sexual selection.  相似文献   

10.
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating. The first part of this study describes morphology and transformation of Tribolium castaneum spermatophores inferred from dissecting females immediately after normal or interrupted copulations. T. castaneum males are found to transfer spermatophores as an invaginated tube that everts inside the female bursa and which is filled with sperm during copulation. This sequence of events makes it feasible for females to control the sperm quantity transferred in each spermatophore. Through manipulation of the male phenotypic quality (by starvation) and manipulation of female control over sperm transfer (by killing a subset of females), the second part of this study examines whether females use control over transferred sperm quantity as a cryptic choice mechanism. Fed males transferred significantly more sperm per spermatophore than starved males but only when mating with live females. These results suggest an active differentiation by live females against starved males and provide an evidence for the proposed cryptic female choice mechanism.  相似文献   

11.
Females of many species mate multiple times and store transferred sperm in storage organs. The mechanisms underlying sperm release from the stores at fertilization remain poorly understood, although they are central to an understanding of the female influence on post-copulatory male competition. Using double-mated females of the yellow dung fly, we counted the sperm sticking to the surface of deposited eggs of two successive clutches to obtain insight into the physiological processes associated with fertilization. The number of sperm released to fertilize an egg decreased between the first and second clutches, as well as within clutches from early to late eggs. These results indicate that: (1) sperm are lost from the stores over time independent of egg laying and (2) the number of sperm released depends on the amount of sperm stored. The lower number of sperm on eggs of the second clutches was accompanied by a strong increase of the proportion of sperm adhering to the micropyle region, suggesting that sperm use is more efficient and sperm release better controlled when sperm supply is substantially reduced. Finally, our approach indicates that sperm storage capacity of the female is higher than assumed from counts of spermathecal sperm.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 511–518.  相似文献   

12.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

13.
In many species females mate with and store sperm from multiple males, and some female insects have evolved multiple compartments for sperm storage. Sperm storage and sperm viability were investigated in two firefly species, Photinus greeni and P. ignitus, which differ in the morphology of the female reproductive tract. Although the primary spermatheca is similar in both species, P. greeni females have an additional, conspicuous outpocketing within the bursa copulatrix whose potential role in sperm storage was investigated in this study. An assay that distinguishes between live and dead sperm was used to examine sperm viability in male seminal vesicles and sperm storage sites within the female reproductive tract. For both Photinus species, sperm from male seminal vesicles showed significantly higher viability compared to sperm from the primary spermatheca of single mated females. In single mated P. greeni females, sperm taken from the channel outpocketing (secondary spermatheca) showed significantly higher viability compared to sperm from the primary spermatheca. This sperm viability difference was not evident in double mated females. There were no significant differences between P. greeni and P. ignitus females in the viability of sperm from the primary spermatheca. These studies contribute to our understanding of post-mating processes that may influence paternity success, and suggest that sexual conflict over control of fertilizations may occur in multiply mated firefly females.  相似文献   

14.
Summary

In many simultaneously hermaphroditic land snail species, the sperm storage organ (spermatheca) is highly structured, suggesting that the female function might be able to influence offspring paternity. Physical properties of the sperm storage organ, including its initial size and sperm storage capacity, may also affect fertilization patterns in multiply mated snails. We examined the structure, volume and tubule length of empty spermathecae in the land snail, Arianta arbustorum, and assessed differences in spermatheca size following a single copulation. The number of spermathecal tubules ranged from 2–7, but was not correlated with the volume of empty spermathecae. The volume of sperm stored in the spermatheca after a copulation was correlated with neither the number of spermathecal tubules nor copulation duration. Mean spermathecal volume more than doubled between two and thirty-six hours after sperm uptake, but the length of the spermathecal tubules did not change. Interestingly, the volume of sperm stored in the spermatheca seems not to be related to the size of the spermatophore and thus not to the number of sperm received (= allosperm). The amount of allosperm digested in the bursa copulatrix was highly variable and no significant relationship with the size of the spermatophore received was found. These findings suggest that numerical aspects of sperm transfer are less important in influencing fertilization success of sperm in A. arbustorum than properties of the female reproductive tract of the sperm receiver.  相似文献   

15.
Abstract. When females are inseminated by multiple males, male paternity success (sperm precedence) is determined by the underlying processes of sperm storage and sperm utilization. Although informative for many questions, two-male sperm competition experiments may offer limited insight into natural mating scenarios when females are likely to mate with several males. In this study, genetic markers in Tribolium castaneum are used to trace paternity for multiple sires, and to determine whether displacement of stored sperm that occurs after a third mating equally affects both previous mates, or if fertilizations are disproportionately lost by the female's most recent mate. For 20 days after triple-matings, first males retain significantly higher paternity success (relative to first male paternity in double-matings) compared with second males. These results demonstrate that when females remate before sperm mixing occurs, sperm stratification results in differential loss of sperm from the most recent mate. This study provides insight into the mechanisms underlying sperm precedence in a promiscuous mating system, and suggests that T. castaneum females could limit paternity success of particular mates by remating with more highly preferred males.  相似文献   

16.
Sperm form and size is tremendously variable within and across species. However, a general explanation for this variation is lacking. It has been suggested that sperm size may influence sperm competition, and there is evidence for this in some taxa but not others. In addition to normal fertilizing sperm, a number of molluscs and insects produce nonfertile sperm that are also extremely morphologically variable, and distinct from fertilizing forms. There is evidence that nonfertile sperm play an indirect role in sperm competition by decreasing female remating propensity in Lepidopterans, but in most taxa the function of parasperm is unknown. We investigated the role of nonfertile (oligopyrene) sperm during sperm competition in the fresh water snail Viviparus ater. Previous studies found that the proportion of oligopyrene sperm increased with the risk of sperm competition, and hence it seems likely that these sperm influence fertilization success during competitive matings. In mating experiments in which females were sequentially housed with males, we examined a range of male characteristics which potentially influence fertilization success. We found that the size of oligopyrene sperm was the best predictor of fertilization success, with males having the longer sperm siring the highest proportion of offspring. Furthermore, we found a positive shell size and sperm concentration effect on paternity, and females with multiply sired families produced more offspring than females mating with only one male. This result suggests polyandry is beneficial for female snails.  相似文献   

17.
Luck N  Dejonghe B  Fruchard S  Huguenin S  Joly D 《Genetica》2007,130(3):257-265
Sperm competition is expected to be a driving force in sexual selection. In internally fertilized organisms, it occurs when ejaculates from more than one male are present simultaneously within the female’s reproductive tract. It has been suggested that greater sperm size may improve the competitive ability of sperm, but studies provide contradictory results depending on the species. More recently, the role of females in the evolution of sperm morphology has been pointed out. We investigate here the male and female effects that influence sperm precedence in the giant sperm species, Drosophila bifurca Patterson & Wheeler. Females were mated with two successive males, and the paternity outcomes for both males were analyzed after determining sperm transfer and storage. We found very high values of last male sperm precedence, suggesting a strong interaction between rival sperm. However, the data also indicate high frequencies of removal of the sperm of the first male from the female reproductive tract prior to any interaction with the second male. This implies that successful paternity depends mainly on successful sperm storage. Knowing what happens to the sperm within females appears to be a prerequisite for disentangling post-copulatory sexual interactions between males and females.  相似文献   

18.
As inbreeding is costly, it has been suggested that polyandry may evolve as a means to reduce the negative fitness consequences of mating with genetically related males. While several studies provide support for this hypothesis, evidence of pure post-copulatory mechanisms capable of biasing paternity towards genetically unrelated males is still lacking; yet these are necessary to support inbreeding avoidance models of polyandry evolution. Here we showed, by artificially inseminating a group of female guppies with an equal number of sperm from related (full-sib) and unrelated males, that sperm competition success of the former was 10 per cent lower, on average, than that of the unrelated male. The paternity bias towards unrelated males was not due to differential embryo survival, as the size of the brood produced by control females, which were artificially inseminated with the sperm of a single male, was not influenced by their relatedness with the male. Finally, we collected ovarian fluid (OF) from virgin females. Using computer-assisted sperm analysis, we found that sperm velocity, a predictor of sperm competition success in the guppy, was significantly lower when measured in a solution containing the OF from a sister as compared with that from an unrelated female. Our results suggest that sperm-OF interaction mediates sperm competition bias towards unrelated mates and highlight the role of post-copulatory mechanisms in reducing the cost of mating with relatives in polyandrous females.  相似文献   

19.
In polyandrous species, paternity may be influenced by the timingand frequency of mating. Female spiders possess 2 genital openingsthat lead to separate sperm-storage structures. Thus, even whenmating with a previously mated female, a male may reduce directsperm competition by inseminating the opposite opening to herfirst mate. Such morphology may provide females with greatercontrol over paternity. We examined simultaneously whether malesavoided already inseminated female genital openings and whetherthis behavior varied with the time between successive matings.To explore these questions, we mated female golden orb weaverspiders, Nephila edulis, each to 2 males and manipulated thetiming of their second mating. We documented male inseminationpatterns and explored the influence of male mating decisionson paternity success using the irradiated male technique. Wefound that 60% of males avoided sperm competition by discriminatingagainst inseminated genital openings. Moreover, male matingbehavior had a dramatic impact on the paternity success of irradiatedmales. When males inseminated the same genital opening, thecompetitive ability of the irradiated male's sperm was dramaticallyreduced resulting in lower paternity success. In contrast, whenthe 2 males inseminated opposite genital openings both malessired equal proportions of offspring regardless of their radiationstatus. There was no evidence that the timing of the secondmating affected patterns of paternity. Our data suggest thatdifferences in sperm quality may influence paternity successof N. edulis males under a sperm-competitive scenario. In contrast,females appear to have limited postmating control over paternity.  相似文献   

20.
The compound ascidian Diplosoma listerianum releases aquatic sperm which are dispersed passively to potential mates as individual gametes prior to storage of sperm, internal fertilization and brooding of embryos. The storage of exogenous sperm enables D. listerianum to produce a lengthy series of progeny following a brief period of mating. Molecular paternity analysis following sequential mating of colonies in laboratory culture revealed a consistent pattern with a clear initial bias in paternity towards the first of two acting males. The sites of sperm storage and fertilization and the morphology of the ovary in D. listerianum suggest that this bias reflects first-in-first-out use of individual stored gametes. The proportion of second-male paternity subsequently increased with time within the progeny arrays. This may have reflected the ageing or passive loss of first-male sperm. It is also possible that the modular nature of the organism contributed to this temporal trend: any recently budded colony modules maturing in the interval between matings would have been available exclusively to second-male sperm as virgin zooids. Two sets of mating trials were run. In the first, the collection of progeny suffered an interruption of 13 days and each male gained a larger proportion of recorded paternity within the progeny analysed when mating first rather than when mating second. In one mating combination, the first male obtained almost 100% of recorded paternity. In the second set of trials, with different clonal combinations, the complete sequence of progeny was collected and the estimated overall proportion of second-male paternity (P2) was consistently > 0.5. Taken as a whole, the results suggest that the overall P2-value can vary widely within the population studied. Proposed mechanisms of mating-order effects in species with copulatory mating include several which can have no counterpart in indirect aquatic mating since they involve the active removal, sealing off, volumetric displacement or incapacitation of first-male ejaculates. It is nevertheless clear that mating-order effects can be pronounced during the type of non-copulatory mating examined here, which is widespread in marine invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号