首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotes, there are still steps of the vitamin B1 biosynthetic pathway not completely understood. In Arabidopsis thaliana, THI1 protein has been associated with the synthesis of the thiazole ring, a finding supported by the identification of a thiamine pyrophosphate (TPP)-like compound in its structure. Here, we investigated THI1 and its mutant THI1(A140V), responsible for the thiamin auxotrophy in a A. thaliana mutant line, aiming to clarify the impact of this mutation in the stability and activity of THI1. Recently, the THI1 orthologue (THI4) was revealed to be responsible for the donation of the sulfur atom from a cysteine residue to the thiazole ring in the thiamine intermediate. In this context, we carried out a cysteine quantification in THI1 and THI1(A140V) using electron spin resonance (ESR). These data showed that THI1(A140V) contains more sulfur-containing cysteines than THI1, indicating that the function as a sulfur donor is conserved, but the rate of donation reaction is somehow affected. Also, the bound compounds were isolated from both proteins and are present in different amounts in each protein. Unfolding studies presented differences in melting temperatures and also in the concentration of guanidine at which half of the protein unfolds, thus showing that THI1(A140V) has its conformational stability affected by the mutation. Hence, despite keeping its function in the early steps during the synthesis of TPP precursor, our studies have shown a decrease in the THI1(A140V) stability, which might be slowing down the biological activity of the mutant, and thus contributing to thiamin auxotrophy.  相似文献   

2.
Myristoylation by the myristoyl-CoA:protein N-myristoyltransferase (NMT) is an important lipid anchor modification of eukaryotic and viral proteins. Automated prediction of N-terminal N-myristoylation from the substrate protein sequence alone is necessary for large-scale sequence annotation projects but it requires a low rate of false positive hits in addition to a sufficient sensitivity.Our previous analysis of substrate protein sequence variability, NMT sequences and 3D structures has revealed motif properties in addition to the known PROSITE motif that are utilized in a new predictor described here. The composite prediction function (with separate ad hoc parameterization (a) for queries from non-fungal eukaryotes and their viruses and (b) for sequences from fungal species) consists of terms evaluating amino acid type preferences at sequences positions close to the N terminus as well as terms penalizing deviations from the physical property pattern of amino acid side-chains encoded in multi-residue correlation within the motif sequence. The algorithm has been validated with a self-consistency and two jack-knife tests for the learning set as well as with kinetic data for model substrates. The sensitivity in recognizing documented NMT substrates is above 95 % for both taxon-specific versions. The corresponding rate of false positive prediction (for sequences with an N-terminal glycine residue) is close to 0.5 %; thus, the technique is applicable for large-scale automated sequence database annotation. The predictor is available as public WWW-server with the URL http://mendel.imp.univie.ac.at/myristate/. Additionally, we propose a version of the predictor that identifies a number of proteolytic protein processing sites at internal glycine residues and that evaluates possible N-terminal myristoylation of the protein fragments.A scan of public protein databases revealed new potential NMT targets for which the myristoyl modification may be of critical importance for biological function. Among others, the list includes kinases, phosphatases, proteasomal regulatory subunit 4, kinase interacting proteins KIP1/KIP2, protozoan flagellar proteins, homologues of mitochondrial translocase TOM40, of the neuronal calcium sensor NCS-1 and of the cytochrome c-type heme lyase CCHL. Analyses of complete eukaryote genomes indicate that about 0.5 % of all encoded proteins are apparent NMT substrates except for a higher fraction in Arabidopsis thaliana ( approximately 0.8 %).  相似文献   

3.
Du W  Lin H  Chen S  Wu Y  Zhang J  Fuglsang AT  Palmgren MG  Wu W  Guo Y 《Plant physiology》2011,156(4):2235-2243
The Arabidopsis (Arabidopsis thaliana) genome encodes nine Salt Overly Sensitive3 (SOS3)-like calcium-binding proteins (SCaBPs; also named calcineurin B-like protein [CBL]) and 24 SOS2-like protein kinases (PKSs; also named as CBL-interacting protein kinases [CIPKs]). A general regulatory mechanism between these two families is that SCaBP calcium sensors activate PKS kinases by interacting with their FISL motif. In this study, we demonstrated that phosphorylation of SCaBPs by their functional interacting PKSs is another common regulatory mechanism. The phosphorylation site serine-216 at the C terminus of SCaBP1 by PKS24 was identified by liquid chromatography-quadrupole mass spectrometry analysis. This serine residue is conserved within the PFPF motif at the C terminus of SCaBP proteins. Phosphorylation of this site of SCaBP8 by SOS2 has been determined previously. We further showed that CIPK23/PKS17 phosphorylated CBL1/SCaBP5 and CBL9/SCaBP7 and PKS5 phosphorylated SCaBP1 at the same site in vitro and in vivo. Furthermore, the phosphorylation stabilized the interaction between SCaBP and PKS proteins. This tight interaction neutralized the inhibitory effect of PKS5 on plasma membrane H(+)-ATPase activity. These data indicate that SCaBP phosphorylation by their interacting PKS kinases is a critical component of the SCaBP-PKS regulatory pathway in Arabidopsis.  相似文献   

4.
Membrane traffic is an important regulator of cell migration through the endocytosis and recycling of cell surface receptors such as integrin heterodimers. Intracellular nanovesicles (INVs) are transport vesicles that are involved in multiple membrane trafficking steps, including the recycling pathway. The only known marker for INVs is tumor protein D54 (TPD54/TPD52L2), a member of the TPD52-like protein family. Overexpression of TPD52-like family proteins in cancer has been linked to poor prognosis and an aggressive metastatic phenotype, which suggests cell migration may be altered under these conditions. Here, we show that TPD54 directly binds membrane and associates with INVs via a conserved positively charged motif in its C terminus. We describe how other TPD52-like proteins are also associated with INVs, and we document the Rab GTPase complement of all INVs. Depletion of TPD52-like proteins inhibits cell migration and invasion, while their overexpression boosts motility. We show that inhibition of migration is likely due to altered recycling of α5β1 integrins in INVs.  相似文献   

5.
N-terminal N-myristoylation is a lipid anchor modification of eukaryotic and viral proteins targeting them to membrane locations, thus changing the cellular function of modified proteins. Protein myristoylation is critical in many pathways; e.g. in signal transduction, apoptosis, or alternative extracellular protein export. The myristoyl-CoA:protein N-myristoyltransferase (NMT) recognizes the sequence motif of appropriate substrate proteins at the N terminus and attaches the lipid moiety to the absolutely required N-terminal glycine residue. Reliable recognition of capacity for N-terminal myristoylation from the substrate protein sequence alone is desirable for proteome-wide function annotation projects but the existing PROSITE motif is not practical, since it produces huge numbers of false positive and even some false negative predictions.As a first step towards a new prediction method, it is necessary to refine the sequence motif coding for N-terminal N-myristoylation. Relying on the in-depth study of the amino acid sequence variability of substrate proteins, on binding site analyses in X-ray structures or 3D homology models for NMTs from various taxa, and on consideration of biochemical data extracted from the scientific literature, we found indications that, at least within a complete substrate protein, the N-terminal 17 protein residues experience different types of variability restrictions. We identified three motif regions: region 1 (positions 1-6) fitting the binding pocket; region 2 (positions 7-10) interacting with the NMT's surface at the mouth of the catalytic cavity; and region 3 (positions 11-17) comprising a hydrophilic linker. Each region was characterized by physical requirements to single sequence positions or groups of positions regarding volume, polarity, backbone flexibility and other typical properties of amino acids (http://mendel.imp.univie.ac.at/myristate/). These specificity differences are confined partly to taxonomic ranges and are proposed for the design of NMT inhibitors in pathogenic fungal and protozoan systems including Aspergillus fumigatus, Leishmania major, Trypanosoma cruzi, Trypanosoma brucei, Giardia intestinalis, Entamoeba histolytica, Pneumocystis carinii, Strongyloides stercoralis and Schistosoma mansoni. An exhaustive search for NMT-homologues led to the discovery of two putative entomopoxviral NMTs.  相似文献   

6.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the covalent attachment of myristate to the N-terminal of the glycine residue of various eukaryotic and viral proteins of diverse functions. Earlier, we have demonstrated that NMT activity is elevated in colon and gall bladder cancer. Attenuation of NMT activity may prove a novel therapeutic protocol for cancer. We report here a novel inhibitor protein of NMT being expressed in Escherichia coli cells containing the human NMT gene on increasing the incubation period from 5 to 24h. The inhibitor protein was purified by SP-Sepharose column chromatography, heat treatment, ammonium sulfate precipitation, and Superose 12 HR/30 FPLC column chromatography. The inhibitor protein had an apparent molecular mass of 10kDa by gel filtration. It inhibited human NMT in a concentration-dependent manner with 50% inhibition at 640+/-4.68nM. The inhibitor protein showed no direct interaction with myristoyl-CoA and demonstrated no demyristoylase or protease activity. Therefore, we conclude that the inhibitor protein acts directly on NMT.  相似文献   

7.
N-myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the transfer of myristate to the NH2-terminal glycine residue of a number of important proteins of diverse function. Little is known about the control and regulation of NMT in higher eukaryotes. Bovine spleen N-myristoyltransferase has been purified and characterized [Raju, RVS, Kalra J & Sharma RK (1994) J Biol Chem 269:12080–12083]. The activation of bovine spleen NMT with thiol reducing compounds, and its inhibition by the oxidizing agent sodium iodate, suggest a role for oxidation/reduction in NMT regulation. Available knowledge concerning coenzyme A (CoA), the thiol in the cell, indicated that the agents tested on NMT could also reduce or oxidize CoA. The studies suggested that reduced CoA is the key regulator of NMT activity, while oxidized CoA did not allow NMT to promote myristoylation. Further, the process of myristoylation and demyristoylation may be governed by NMT, depending on the differential concentration of CoA. The process of demyristoylation could be blocked by excess CoA. We therefore hypothesize that the initial event in the regulation of NMT is an increase in cellular CoA concentration which could be coupled to an increase in protein myristoylation. Once the CoA concentration in the cell decreases due to oxidation, the demyristoylation process would be operative.Abbreviations NMT N-myristoyl CoA:protein N-myristoyltransferase - hNMT human NMT - YNMT yeast NMT - DTNB N-55 dithiobis(2-nitrobenzoic acid) - DTT dithiothretol - 2-ME 2-mercaptoethanol  相似文献   

8.
N-myristoyltransferase (NMT) is an indispensible enzyme, which exists as two isoforms (NMT1 and NMT2) in humans and has proven roles in development of cancerous states. It is thus a target for novel anti-cancer drug design, but understanding of the biochemical and functional differences of these isozymes is not fully deciphered. A soluble expression under the T7 promoter for human NMT1 was achieved in E. coli BL21 (DE3) cells, devoid of any isopropyl β-d-1-thiogalactopyranoside-based induction. The identity of expressed protein was confirmed by matrix-assisted laser desorption ionization mass spectrometry peptide-fingerprint analysis and a two-step purification protocol yielded homogeneous enzyme. The intact mass of the purified protein was verified by electrospray ionization mass spectrometry and found to be in agreement with the theoretical mass (48.141 vs. 48.140 kDa). The fluorescence spectrophotometric analyses of the ligand binding and enzyme activity demonstrated that the recombinant form is functional. The yield of purified protein was ~8–10 mg/L culture (batch to batch variation) with a specific activity value of 18,500 ± 513 U/mg of protein under the experimental conditions used. The final verification of the myristoylation was demonstrated by mass spectrometry analysis of reaction product. The described approach could be readily adapted for production of human NMT1, with high yields of pure enzyme preparations, which should aid in downstream applications involving inhibitor design and structure–function studies of NMT’s.  相似文献   

9.
N-myristoyltransferases (NMT) add myristate to the NH(2) termini of certain proteins, thereby regulating their localization and/or biological function. Using RNA interference, this study functionally characterizes the two NMT isozymes in human cells. Unique small interfering RNAs (siRNA) for each isozyme were designed and shown to decrease NMT1 or NMT2 protein levels by at least 90%. Ablation of NMT1 inhibited cell replication associated with a loss of activation of c-Src and its target FAK as well as reduction of signaling through the c-Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays showed that depletion of either NMT isozyme induced apoptosis, with NMT2 having a 2.5-fold greater effect than NMT1. Western blot analyses revealed that loss of NMT2 shifted the expression of the BCL family of proteins toward apoptosis. Finally, intratumoral injection of siRNA for NMT1 or for both NMT1 and NMT2 inhibited tumor growth in vivo, whereas the same treatment with siRNA for NMT2 or negative control siRNA did not. Overall, the data indicate that NMT1 and NMT2 have only partially overlapping functions and that NMT1 is critical for tumor cell proliferation.  相似文献   

10.
N-myristoyltransferase (NMT) exists in two isoforms, NMT1 and NMT2, that catalyze myristoylation of various proteins crucial in signal transduction, cellular transformation, and oncogenesis. We have recently demonstrated that NMT1 is essential for the early development of mouse embryo. In this report, we have demonstrated that an invariant consequence of NMT1 knock out is defective myelopoesis. Suppressed macrophage colony forming units were observed in M-CSF-stimulated bone marrow cells from heterozygous (+/-) Nmt1-deficient mice. Homozygous (-/-) Nmt1-deficient mouse embryonic stem cells resulted in drastic reduction of macrophages when stimulated to differentiate by M-CSF. Furthermore, to understand the requirement of NMT1 in the monocytic differentiation we investigated the role of NMT, pp60c-Src (NMT substrate) and heat shock cognate protein 70 (inhibitor of NMT), during PMA-induced differentiation of U937 cells. Src kinase activity and protein expression increased during the differentiation process along with regulation of NMT activity by hsc70. NMT1 knock down in PMA treated U937 cells showed defective monocytic differentiation. We report in this study novel observation that regulated total NMT activity and NMT1 is essential for proper monocytic differentiation of the mouse bone marrow cells.  相似文献   

11.
A variety of eukaryotic viral and cellular proteins possesses an NH2-terminal N-myristoylglycine residue important for their biological functions. Recent studies of the primary structural requirements for peptide substrates of the enzyme responsible for this modification in yeast demonstrated that residues 1, 2, and 5 play a critical role in enzyme: ligand interactions (Towler, D. A., Adams, S. P., Eubanks, S. R., Towery, D. S., Jackson-Machelski, E., Glaser, L., and Gordon J. I. (1987b) Proc. Natl. Acad. Sci. U. S. A. 84, 2708-2812). This was determined by examining as substrates a series of synthetic peptides whose sequences were systematically altered from a "parental" peptide derived from the known N-myristoylprotein bovine heart cyclic AMP-dependent protein kinase (A kinase) catalytic subunit. We have now extended these studies in order to examine structure/activity relationships in the COOH-terminal regions of octapeptide substrates of yeast N-myristoyltransferase (NMT). The interaction between yeast NMT and the side chain of residue 5 in peptide ligands is apparently sterically constrained, since Thr5 is unable to promote the very high affinity binding observed with a Ser5 substitution. A substrate hexapeptide core has been defined which contains much of the information necessary for recognition by this lower eukaryotic NMT. Addition of COOH-terminal basic residues to this hexapeptide enhances peptide binding, while COOH-terminal acidic residues destabilize NMT: ligand interactions. Based on the results obtained from our in vitro studies of over 80 synthetic peptides and yeast NMT, we have identified a number of potential N-myristoylproteins from searches of available protein databases. These include hepatitis B virus pre-S1, human SYN-kinase, rodent Gi alpha, and bovine transducin-alpha. Peptides corresponding to the NH2-terminal sequences of these proteins and several known N-myristoylproteins were assayed using yeast NMT as well as partially purified rat liver NMT. While a number of the synthetic peptides exhibited similar catalytic properties with the yeast and mammalian enzymes, surprisingly, the SYN-kinase, Gi alpha, and transducin-alpha peptides were N-myristoylated by rat NMT but not by yeast NMT. This suggests that either multiple NMT activities exist in rat liver or the yeast and rodent enzymes have similar but distinct peptide substrate specificities.  相似文献   

12.
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.  相似文献   

13.
In metazoans, replication-dependent histone mRNAs end in a stem-loop structure instead of the poly(A) tail characteristic of all other mature mRNAs. This specialized 3′ end is bound by stem-loop binding protein (SLBP), a protein that participates in the nuclear export and translation of histone mRNAs. The translational activity of SLBP is mediated by interaction with SLIP1, a middle domain of initiation factor 4G (MIF4G)-like protein that connects to translation initiation. We determined the 2.5 Å resolution crystal structure of zebrafish SLIP1 bound to the translation–activation domain of SLBP and identified the determinants of the recognition. We discovered a SLIP1-binding motif (SBM) in two additional proteins: the translation initiation factor eIF3g and the mRNA-export factor DBP5. We confirmed the binding of SLIP1 to DBP5 and eIF3g by pull-down assays and determined the 3.25 Å resolution structure of SLIP1 bound to the DBP5 SBM. The SBM-binding and homodimerization residues of SLIP1 are conserved in the MIF4G domain of CBP80/20-dependent translation initiation factor (CTIF). The results suggest how the SLIP1 homodimer or a SLIP1–CTIF heterodimer can function as platforms to bridge SLBP with SBM-containing proteins involved in different steps of mRNA metabolism.  相似文献   

14.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the cotranslational, covalent attachment of a rare fatty acid, myristic acid (C14:0), to the amino-terminal glycine residue of a number of eukaryotic proteins involved in cellular growth and signal transduction as well as several viral proteins necessary for assembly-replication. NMT has become a target for both anti-viral and anti-fungal therapy. Analysis of purified Saccharomyces cerevisiae NMT plus yeast strains with conditional lethal nmt1 mutations have provided insights about how this process is regulated in vivo. We have now defined the location of NMT in two strains of S. cerevisiae to better understand the functional and spatial relationships between this enzyme and cellular systems that generate its acyl-CoA and peptide ligands. Western blot studies using an affinity purified antibody raised in rabbits against purified S. cerevisiae NMT indicate that the acyltransferase represents 0.06% of total cellular proteins in an exponentially growing haploid strain with a wild type NMT1 allele. Another strain containing a single, integrated copy of a GAL1/NMT1 fusion gene and a nmt1 null allele had 12-fold higher levels of NMT when grown on galactose-containing media. This increase in NMT production had no detectable effects on growth or cellular morphology. Cell fractionation studies, confocal fluorescence immunocytochemical analysis, and immunogold electron microscopic surveys of fixed, gelatin-embedded cryosections of both strains revealed that NMT is a cytosolic protein that is not associated with cellular membranes (including the endoplasmic reticulum and plasma membrane), the nucleus, mitochondria, Golgi apparatus, or vacuoles. This finding is discussed in light of what is known about the location and activities of enzymes involved in de novo fatty acid biosynthesis and in amino-terminal processing of nascent proteins.  相似文献   

15.
Tumor protein D52-like proteins (TPD52) are small coiled-coil motif bearing proteins that were first identified in breast cancer. TPD52 and related proteins have been implicated in cell proliferation, apoptosis, and vesicle trafficking. To date, three human TPD52 members had been identified, named hD52 (TPD52), hD53 (TPD52L1), and hD54 (TPD52L2). The most important characteristic of the protein family is a highly conserved coiled-coil motif that is required for homo- and heteromeric interaction with other TPD52-like proteins. Herein, we identified a novel TPD52-like sequence (TPD52L3, or hD55) in human testis using cDNA microarray. Sequence analysis of the deduced protein suggests that hD55 contains a coiled-coil motif and is highly conserved compared with other TPD52-like sequences. Yeast two-hybrid and GST pull-down assays revealed that hD55 interacts with hD52, hD53, hD54, and itself. cDNA microarray detection found that hD55 was expressed at 5.6-fold higher levels in adult testis than in fetal testis. Additionally, the expression profile shows that hD55 is testis-specific, indicating a potential role for hD55 in testis development and spermatogenesis.  相似文献   

16.
17.
Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction.  相似文献   

18.
19.
20.
The Delta6-desaturase catalyzes key steps in long-chain polyunsaturated fatty acid biosynthesis. Although the gene coding for this enzyme has been isolated in diverse animal species, the protein structure remains poorly characterized. In this work, rat Delta6-desaturase expressed in COS-7 cells was shown to localize in the endoplasmic reticulum. As the enzyme contains an N-terminal cytochrome b5-like domain, we investigated by site-directed mutagenesis the role of this domain in the enzyme activity. The typical HPGG motif of the cytochrome b5-like domain, and particularly histidine in this motif, is required for the activity of the enzyme, whatever the substrate. Neither endogenous COS-7 cytochrome b5 nor coexpressed rat endoplasmic reticulum cytochrome b5 could rescue the activity of mutated forms of Delta6-desaturase. Moreover, when rat endoplasmic reticulum cytochrome b5 was coexpressed with wild-type desaturase, both proteins interacted and Delta6-desaturase activity was significantly increased. The identified interaction between these proteins is not dependent on the desaturase HPGG motif. These data suggest distinct and essential roles for both the desaturase cytochrome b5-like domain and free endoplasmic reticulum cytochrome b5 for Delta6-desaturase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号