首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with attraction, and EAG analyses confirmed chemoreception of terpenoids by antennal receptors of X. glabratus.  相似文献   

2.
Laurel wilt disease (LWD), a fungal disease vectored by the non-native redbay ambrosia beetle (Xyleborus glabratus Eichhoff), has caused mortality of redbay (Persea borbonia (L.) Spreng.) in the coastal plain of Georgia since 2003. Despite its rapid spread, little research has evaluated its impacts on redbay population structure and forest communities. Diseased populations of redbay in five sites (2–4 years post infestation) were compared to healthy populations in three uninfested sites in five counties in Georgia. The results showed high redbay mortality, shifts in size structure, and changes in community composition. An average of 90 % of redbay trees ≥3 cm diameter at breast height (DBH) were dead in infested sites, compared to 0–35 % in control sites. Mortality was seen in individuals of the smallest stem diameter category (<1.00 cm diameter at ground height). DBH of live redbay trees in control sites was twice that of those in infested sites. Photosynthetically active radiation was 4.8 times greater at infested sites than control sites due to loss of redbay canopy. Community structure measurements showed redbay trees had the greatest mean importance value (IV) at control sites compared to the 8th mean IV at infested sites for live stems. Two species co-dominant to redbay, sweetbay (Magnolia virginiana L.) and loblolly bay (Gordonia lasianthus (L.) J. Ellis), were of higher importance at infested than control sites, suggesting they are increasing in dominance following the mortality of redbay. This study shows LWD has impacted redbay populations and altered associated forest communities in Georgia.  相似文献   

3.
The redbay ambrosia beetle, Xyleborus glabratus, is the vector of the laurel wilt disease fungal pathogen, Raffaelea lauricola. Since the vector's initial detection in the USA in the early 2000s, laurel wilt has killed millions of redbay, Persea borbonia, trees and other members of the plant family Lauraceae. To protect host trees from beetle attack and laurel wilt infection, we tested the efficacy of host‐ and non‐host‐derived and commercial compounds as X. glabratus repellents in field experiments. In our first trial, the major constituents of the non‐host tree, longleaf pine, Pinus palustris, and SPLAT Verb (verbenone 10%) were paired with manuka oil attractants and beetle captures were counted. Verbenone and a 1 : 1 blend of myrcene and camphene were intermediate to both the manuka positive and blank negative controls. Subsequently, we tested different blends of methyl salicylate (MeSA), a host defence and signalling compound, and verbenone in SPLAT dispensers using freshly cut redbay bolts as an attractant. All treatments reduced X. glabratus captures and boring holes as compared to the redbay (‐) repellent positive control; however, SPLAT Verb and SPLAT MeSA‐Verb (5% each) achieved the highest repellency, with results comparable to that of the non‐host (laurel oak). These trials establish that host‐derived and commercially available repellent compounds can reduce X. glabratus attacks and therefore have potential as part of an integrated management strategy against laurel wilt and its vector.  相似文献   

4.
  1. Laurel wilt is a disease that has caused extensive mortality of redbay Persea borbonia in the southeastern U.S.A. The redbay ambrosia beetle Xyleborus glabratus is the vector of the causal agent of laurel wilt, the fungus Raffaelea lauricola.
  2. We tested two potential repellents to the redbay ambrosia beetle, verbenone and methyl salicylate (MeSA) in an 8‐month large‐scale experiment conducted in three locations in Florida. In each location, redbay trees were treated with a single or double application of SPLAT (Specialized Pheromone and Lure Application Technology; ISCA Technologies, Riverside, California) verbenone, as well as SPLAT with a 1:2 mix of MeSA and verbenone.
  3. The MeSA + verbenone mixes did not reduce beetle captures compared with the control treatment, whereas SPLAT verbenone alone significantly reduced the number of beetles captured on sticky traps placed on redbay trees in the three locations. The reduction of beetle capture was similar regardless of one or two treatments of SPLAT verbenone. The reduction of tree death with the SPLAT verbenone treatment was not statistically significant.
  4. The results of the present study suggest that trunk application of verbenone can reduce landing rates of the redbay ambrosia beetle on live redbay trees and shows promise for use in an integrated pest management strategy against laurel wilt.
  相似文献   

5.
6.
Macaronesian laurel forests are the only remnants of a subtropical palaeoecosystem dominant during the Tertiary in Europe and northern Africa. These biodiverse ecosystems are restricted to cloudy and temperate insular environments in the North Atlantic Ocean. Due to their reduced distribution area, these forests are particularly vulnerable to anthropogenic disturbances and changes in climatic conditions. The assessment of laurel forest trees’ response to climate variation by dendrochronological methods is limited because it was assumed that the lack of marked seasonality would prevent the formation of distinct annual tree rings. The aims of this study were to identify the presence of annual growth rings and to assess the dendrochronological potential of the most representative tree species from laurel forests in Tenerife, Canary Islands. We sampled increment cores from 498 trees of 12 species in two well-preserved forests in Tenerife Island. We evaluated tree-ring boundary distinctness, dating potential, and sensitivity of tree-ring growth to climate and, particularly, to drought occurrence. Eight species showed clear tree-ring boundaries, but synchronic annual tree rings and robust tree-ring chronologies were only obtained for Laurus novocanariensis, Ilex perado subsp. platyphylla, Persea indica and Picconia excelsa, a third of the studied species. Tree-ring width depended on water balance and drought occurrence, showing sharp reductions in growth in the face of decreased water availability, a response that was consistent among species and sites. Inter-annual tree-ring width variation was directly dependent on rainfall input in the humid period, from previous October to current April. The four negative pointer years 1995, 1999, 2008 and 2012 corresponded to severe drought events in the study area. This study gives the first assessment of dendrochronological potential and tree-ring climate sensitivity of tree species from the Tenerife laurel forest, which opens new research avenues for dendroecological studies in Macaronesian laurel forests.  相似文献   

7.
Laurel wilt is an extraordinarily destructive exotic tree disease in the southeastern United States that involves new-encounter hosts in the Lauraceae, an introduced vector (Xyleborus glabratus) and pathogen symbiont (Raffaelea lauricola). USDA Forest Service Forest Inventory and Analysis data were used to estimate that over 300 million trees of redbay (Persea borbonia sensu lato) have succumbed to the disease since the early 2000s (ca 1/3 of the pre-invasion population). In addition, numerous native shrub and tree species in the family are susceptible and  threatened in the Western Hemisphere. Genetic markers were used to test the hypothesis that the vector and pathogen entered North America as a single introduction. With a portion of the cytochrome oxidase I gene, a single X. glabratus haplotype was detected in the USA. Similarly, Amplified Fragment Length Polymorphisms indicated that 95% (54 of 57) of the isolates of R. lauricola that were examined were of a single clonal genotype; only minor variation was detected in three polymorphic isolates. Similar levels of disease developed after swamp bay (P. palustris) was inoculated with each of the four genotypes of R. lauricola. It is proposed that a single founding event is responsible for the laurel wilt epidemic in the United States.  相似文献   

8.
9.
Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.  相似文献   

10.
The redbay ambrosia beetle (RAB), Xyleborus glabratus, is a wood-boring insect that vectors the fungal pathogen, Raffaelea lauricola, which causes laurel wilt, a lethal disease of avocado. The objective of this study was to determine the susceptibility of RAB to infection and subsequent death by exposure to three commercial strains of entomopathogenic fungi [two strains of Isaria fumosorosea (Ifr 3581 and PFR), and strain GHA of Beauveria bassiana]. RAB females were dipped in fungal spore solutions and their median survivorship times (MST) determined. Contact with any of the biopesticides resulted in death of all RAB females. MSTs of RAB females ranged from 3 days (B. bassiana) to 5 days (I. fumosorosea PFR). B. bassiana killed RAB females faster, followed by Ifr 3581 and PFR. RAB females dipped in B. bassiana suspensions had the highest number of viable spores attached to their bodies, followed by Ifr 3581. Beetles dipped in PFR suspension had significantly less viable spores attached to their bodies. No significant differences were observed in the mortality of beetles exposed to entomopathogenic fungi by dipping in a fungal suspension or walking on treated avocado bolts. Beetles bored into the logs and constructed galleries, but they were found dead inside the galleries a few days after exposure to the entomopathogens. Entomopathogenic fungal infection in dead beetles was confirmed through molecular techniques. This is the first study to demonstrate that entomopathogenic fungi are potential biological control agents against RAB.  相似文献   

11.
《Flora》2014,209(12):718-724
Sprouting is recognized as an important genet persistence strategy for clonal woody plants, but the role of sprouting may differ between species and between sexes, depending on physiological integration. We tested the effect of physiological integration on the mortality, recruitment and growth of the sprouting male and female ramets of two closely related dioecious shrubs of Lindera, in a field experiment using girdling manipulation. Although between-sex differences observed were obscure, we found between-species differences in the sprouting patterns. The rates of ramet mortality and recruitment were significantly lower for L. praecox than L. triloba. In L. praecox genets, the ramet production was low, and the main ramets might actively translocate assimilates towards the small sprouted ramets, which then facilitates high ramet growth and survival (sprout-nursing strategy). Meanwhile, in L. triloba genets, although many ramets were recruited, assimilate translocation from the main ramets to the sprouted ramets might be less abundant, which causes high ramet mortality (sprout-turnover strategy). For a more general knowledge of the various sprouting strategies in clonal plants, our study demonstrated that inter-specific comparisons using girdling experiments at the whole-plant level could reveal the role of physiological integration on the link between the sprouting pattern and above-ground structures of clonal plants.  相似文献   

12.
There are numerous examples of how exotic insect pests and pathogens have altered the dominance of native tree species. Changes to the structure of associated communities will depend on whether the affected species survives and if so, the degree to which it is diminished. In the southeastern USA, Persea borbonia, a common tree found in many coastal plain habitats, is the primary host of laurel wilt disease (LWD); infection rates and main-stem mortality are catastrophically high (>90%) in invaded populations. We simulated the effects of LWD prior to its arrival in coastal Mississippi by girdling and then removing the main stems of P. borbonia trees. Over a 2-year period, we monitored P. borbonia persistence via basal resprouts, understory light availability, and community structure. Removal of P. borbonia main stems resulted in a 50% increase in light transmission (measured at 1 m above ground level). All treated individuals produced basal resprouts, the size and number of which were positively related to initial tree girth. Post-treatment increases in basal area were greatest for the sub-canopy species, Ilex vomitoria, and were significantly higher in treatment versus control plots. Woody seedlings and herbaceous plants showed no significant trends in composition and abundance over time or between control and treatment plots. Our results suggest that removal of P. borbonia and subsequent resprouting causes shifts in P. borbonia size class frequencies and sub-canopy species dominance but has negligible impacts on understory plant community dynamics.  相似文献   

13.
  1. The redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), vectors the mycopathogen that causes laurel wilt, a lethal vascular disease of trees in the Lauraceae. Since being detected in Georgia, USA in 2002, this invasive pest has become established in 11 additional states.
  2. With continued spread, X. glabratus will likely enter Mexico. In advance of this event, this study was initiated to assess the risk posed to eight native laurels and Hass avocados, the predominant cultivar grown in Mexico.
  3. Wood bolts from each species were used in (a) field tests to determine the relative attraction of female X. glabratus, (b) laboratory bioassays to evaluate boring preferences, and (c) GC–MS analyses to identify host kairomones. For comparison, tests included control bolt treatments consisting of silkbay (an attractive U.S. laurel) and Simmonds avocado (a Florida cultivar susceptible to laurel wilt).
  4. Hass avocado and two native laurels (Persea schiedeana and Ocotea heribertoi vel aff.) were highly attractive to females and elicited strong boring responses. These species were high in sesquiterpene hydrocarbons, including α-copaene and α-cubebene.
  5. Results of this study suggest that X. glabratus could become a serious agricultural and forest pest upon incursion into Mexico, with severe economic and ecological impacts.
  相似文献   

14.
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-borer that vectors the fungal agent (Raffaelea lauricola) responsible for laurel wilt. Laurel wilt has had severe impact on forest ecosystems in the southeastern United States, killing a large proportion of native Persea trees, particularly redbay (P. borbonia) and swampbay (P. palustris), and currently poses an economic threat to avocado (P. americana) in Florida. To control the spread of this lethal disease, effective attractants are needed for early detection of the vector. Two 12-wk field tests were conducted in Florida to evaluate efficacy and longevity of manuka and phoebe oil lures, and to relate captures of X. glabratus to release rates of putative sesquiterpene attractants. Two trap types were also evaluated, Lindgren funnel traps and sticky panel traps. To document lure emissions over time, a separate set of lures was aged outdoors for 12 wk and sampled periodically to quantify volatile sesquiterpenes using super-Q adsorbant and gas chromatography-mass spectroscopy analysis. Phoebe lures captured significantly more X. glabratus than manuka lures, and sticky traps captured more beetles than funnel traps. Phoebe lures captured X. glabratus for 10-12 wk, but field life of manuka lures was 2-3 wk. Emissions of alpha-copaene, alpha-humulene, and cadinene were consistently higher from phoebe lures, particularly during the 2-3 wk window when manuka lures lost efficacy, suggesting that these sesquiterpenes are primary kairomones used by host-seeking females. Results indicate that the current monitoring system is suboptimal for early detection of X. glabratus because of rapid depletion of sesquiterpenes from manuka lures.  相似文献   

15.
Salk CF  McMahon SM 《Oecologia》2011,166(2):485-492
Most theories of forest biodiversity focus on the role of seed dispersal and seedling establishment in forest regeneration. In many ecosystems, however, sprouting by damaged stems determines which species occupies a site. Damaged trees can quickly recover from disturbance and out-compete seedlings. Links among species’ traits, environmental conditions and sprouting could offer insight into species’ resilience to changes in climate, land use, and disturbance. Using data for 25 Neotropical tree species at two sites with contrasting rainfall and soil, we tested hypotheses on how four functional traits (seed mass, leaf mass per area, wood density and nitrogen fixation) influence species’ sprouting responses to disturbance and how these relationships are mediated by a tree’s environmental context. Most species sprouted in response to cutting, and many species’ sprouting rates differed significantly between sites. Individual traits showed no direct correlation with sprouting. However, interactions among traits and site variables did affect sprouting rates. Many species showed increased sprouting in the higher-quality site. Most nitrogen-fixing species showed the opposite trend, sprouting more frequently where resources are scarce. This study highlights the use of functional traits as a proxy for life histories, and demonstrates the importance of environmental effects on demography.  相似文献   

16.
There is growing evidence demonstrating the diversity of foliar endophytic fungi and their ecological roles in the survival of tree seedlings. However, the factors that shape fungal communities in tree seedlings within natural forest ecosystems remain poorly understood. Here, we evaluated the composition of foliar endophytic fungi growing in current-year seedlings of Cornus controversa and Prunus grayana in a cool temperate deciduous forest through a seed-sowing experiment and fungal isolation. The composition of endophytic fungi was affected by canopy tree species, canopy openness, and time after germination. In total, 27 and 22 fungal taxa were isolated from C. controversa and P. grayana seedlings, respectively. The dominant fungal taxa in both seedling species were Colletotorichum spp., and their isolation frequencies were higher under C. controversa canopies than under P. grayana canopies; the frequencies also increased with time after germination. These results suggest that overstory tree species strongly influences the endophytic fungal communities of understory seedlings.  相似文献   

17.
Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon‐cycle feedbacks. Recent drought‐induced, widespread forest die‐offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die‐off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die‐off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vegetation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress‐induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems.  相似文献   

18.

In temperate oak forests in Ohio, USA, we examined variability in forest communities within containment treatment sites for oak wilt (Bretziella fagacearum), a fungal pathogen lethal to susceptible oak species. Containment treatments included quarantine lines in soil for limiting belowground fungal spread and sanitation cutting of 1–3 mature black oak (Quercus velutina) trees within oak wilt infection patches. At 28 sites, we compared tree structure and understory plant communities across a gradient of 1- to 6-year-old treatments and reference forest (untreated and without evidence of oak wilt). While oak seedlings were abundant, oak saplings (1–10 cm in diameter) were absent. In contrast, many native understory plant community measures were highest in oak wilt treatments. Plant species richness 100 m?2 doubled in treatments, regardless of age, compared with reference forest. Plant cover increased with treatment age, with 6-year-old treatments exhibiting 5?×?more cover than reference forest. Non-native plants averaged only a small proportion (<?0.12) of cover across treatments and reference forest. Variability in understory communities was mostly predictable using treatment age, tree canopy cover, and geographic location, as 20 of 25 understory measures had at least 72% of their variance modeled. While oak wilt treatments did not facilitate oak regeneration nor many conservation-priority species of open savanna-woodland habitats, the treatments did diversify and increase cover of native understory communities with minimal invasion of non-native plants.

  相似文献   

19.
In 1998, we measured the effects of Hurricane Georges after it passed over long‐term research sites in Puerto Rican dry forest. Our primary objectives were to quantify hurricane effects on forest structure, to compare effects in a large tract of forest versus a series of nearby forest fragments, to evaluate short‐term response to hurricane disturbance in terms of mortality and sprouting, and to assess the ability of hurricanes to maintain forest structure. We sampled damage from 33 plots (1.3 ha) across a 3000‐ha tract of forest as well as in 19 fragments. For stems with 2.5‐cm minimum diameter, 1004 stems/ha (12.4%) suffered structural damage, while 69 percent of the undamaged stems were at least 50 percent defoliated. Basal area lost to structural damage equaled 4.0 m2/ha (22%) in south‐facing native forests. Structural damage and defoliation increased with stem diameter and were more common in certain dry forest species. South‐facing forests and those on ridgetops incurred more damage than north‐facing forests or those comprised primarily of introduced species. Stem mortality was only 2 percent of all stems after 9 mo. Structural damage did not necessarily result in stem mortality. Hurricane‐induced mortality was not associated with stem height or diameter, but was ten times greater than background mortality. Basal sprouting was proportional to the amount of structural damage incurred in a stand. Forest fragments experienced the same patterns of hurricane effects as the reference forest. The low, dense structure of Caribbean dry forest can be maintained by hurricane damage to larger stems and induction of basal sprouting to generate multistemmed trees.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号