首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng Y  Yang X  Wang J  Fan J  Kong Q  Yu X 《PloS one》2012,7(1):e30312
Autophagy is a lysosomal degradation pathway that is essential for cell survival and tissue homeostasis. However, limited information is available about autophagy in aristolochic acid (AA) nephropathy. In this study, we investigated the role of autophagy and related signaling pathway during progression of AAI-induced injury to renal tubular epithelial cells (NRK52E cells). The results showed that autophagy in NRK52E cells was detected as early as 3-6 hrs after low dose of AAI (10 μM) exposure as indicated by an up-regulated expression of LC3-II and Beclin 1 proteins. The appearance of AAI-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in NRK52E cells provided further evidence for autophagy. However, cell apoptosis was not detected until 12 hrs after AAI treatment. Blockade of autophagy with Wortmannin or 3-Methyladenine (two inhibitors of phosphoinositede 3-kinases) or small-interfering RNA knockdown of Beclin 1 or Atg7 sensitized the tubular cells to apoptosis. Treatment of NRK52E cells with AAI caused a time-dependent increase in extracellular signal-regulated kinase 1 and 2 (ERK1/2) activity, but not c-Jun N-terminal kinase (JNK) and p38. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased AAI-induced autophagy that was accompanied by an increased apoptosis. Taken together, our study demonstrated for the first time that autophagy occurred earlier than apoptosis during AAI-induced tubular epithelial cell injury. Autophagy induced by AAI via ERK1/2 pathway might attenuate apoptosis, which may provide a protective mechanism for cell survival under AAI-induced pathological condition.  相似文献   

2.
3.
4.
Ingestion of aristolochic acids (AA) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adduct formation, is well-documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. Epithelial cell death is a critical characteristic of these pathological conditions. To elucidate the mechanisms of AA-induced cytotoxicity, we explored AA-interacting proteins in tubular epithelial cells (TEC). We found that AA interacts with a mitochondrial enzyme glutamate dehydrogenase (GDH) and moderately inhibits its activity. We report that AA induces cell death in GDH-knockdown TEC preferentially via non-apoptotic means, whereas in GDH-positive cells, death was executed by both the non-apoptotic and apoptotic mechanisms. Apoptosis is an energy-reliant process and demands higher adenosine 5′-triphosphate (ATP) consumption than does the non-apoptotic cell death. We found that, after AAI treatment, the ATP depletion is more pronounced in GDH-knockdown cells. When we reduced ATP in TEC cells by inhibition of glycolysis and mitochondrial respiration, cell death mode switched from apoptosis and necrosis to necrosis only. In addition, in cells incubated at low glucose and no glutamine conditions, oxaloacetate and pyruvate reduced AAI-induced apoptosis our data suggest that AAI-GDH interactions in TEC are critical for the induction of apoptosis by direct inhibition of GDH activity. AA binding may also induce changes in GDH conformation and promote interactions with other molecules or impair signaling by GDH metabolic products, leading to apoptosis.  相似文献   

5.
Histone deacetylase inhibitors and casein kinase 2 inhibitors have been shown to induce apoptosis. However, the combined effect of casein kinase 2 inhibition on the apoptotic effect of histone deacetylase inhibitor is unknown. We assessed the effect of casein kinase 2 inhibition on the apoptotic effect of trichostatin A in human epithelial carcinoma cell lines with respect to cell death signaling pathways. At concentrations that did not induce cell death, the casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited activation of apoptotic proteins and changes in mitochondrial membrane permeability induced by the histone deacetylase inhibitor trichostatin A. These results suggest that casein kinase 2 inhibition may reduce trichostatin A-induced apoptosis in ovarian carcinoma cell lines by suppressing activation of apoptotic proteins and changes in mitochondrial membrane permeability, which both lead to caspase-3 activation. Casein kinase 2 inhibition, which does not induce a cytotoxic effect, may prevent histone deacetylase inhibitor-mediated apoptosis.  相似文献   

6.
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.  相似文献   

7.
Apoptotic resistance leads to persistent accumulation of senescent cells and sustained expression of a senescence-associated secretory phenotype, playing an essential role in the progression of tissue fibrosis. However, whether senescent renal tubular epithelial cells (RTECs) exhibit an apoptosis-resistant phenotype, and the role of this phenotype in diabetic nephropathy (DN) remain unclear. Our previous study was the first to demonstrate that decoy receptor 2 (DcR2) is associated with apoptotic resistance in senescent RTECs and renal fibrosis. In this study, we aimed to further explore the mechanism of DcR2 in apoptosis-resistant RTECs and renal fibrosis in DN. DcR2 was co-localized with fibrotic markers (α-SMA, collagen IV, fibronectin), senescent marker p16, and antiapoptotic proteins FLIP and Bcl2 but rarely co-localized with caspase 3 or TUNEL. DcR2 overexpression promoted renal fibrosis in mice with streptozotocin (STZ)-induced DN, as evidenced by augmented Masson staining and upregulated expression of fibrotic markers. DcR2 overexpression also enhanced FLIP expression while reducing the expression of pro-apoptotic proteins (caspases 8 and 3) in senescent RTECs, resulting in apoptotic resistance. In contrast, DcR2 knockdown produced the opposite effects in vitro and in vivo. Moreover, quantitative proteomics and co-immunoprecipitation experiments demonstrated that DcR2 interacted with glucose-related protein 78 kDa (GRP78), which has been shown to promote apoptotic resistance in cancer. GRP78 exhibited co-localization with senescent and antiapoptotic markers but was rarely co-expressed with caspase 3 or TUNEL. Additionally, GRP78 knockdown decreased the apoptosis resistance of HG-induced senescent RTECs with upregulated cleaved caspase 3 and increased the percentage of apoptotic RTECs. Mechanistically, DcR2 mediated apoptotic resistance in senescent RTECs by enhancing GRP78–caspase 7 interactions and promoting Akt phosphorylation. Thus, DcR2 mediated the apoptotic resistance of senescent RTECs and renal fibrosis by interacting with GRP78, indicating that targeting the DcR2–GRP78 axis represents a promising therapeutic strategy for DN.Subject terms: Chronic kidney disease, Interstitial disease  相似文献   

8.
Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-l-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.  相似文献   

9.
Podocyte apoptosis is a major factor inducing podocyte depletion that predicts the progressive course of glomerulosclerosis. However, the molecular mechanisms underlying podocyte apoptosis are still not well understood. Autophagy is a lysosomal degradation system involving the degradation and recycling of obsolete, damaged, or harmful cytoplasmic materials and organelles. Recent advances in the understanding of the molecular processes contributing to autophagy have provided insight into the relationship between autophagy and apoptosis. However, their cross-talk remains largely obscure until now. Here, we found that podocytes both in vivo and in vitro always exhibited high basal levels of autophagy, whereas autophagy inhibition could induce podocyte apoptosis, suggesting the pro-survival role of autophagy in podocytes. Besides, we found that autophagy inhibition by 3-methyladenine (3-MA) could induce the activation of endoplasmic reticulum stress even without any external stimulations, whereas knockdown of CHOP could effectively improve podocyte apoptosis and down-regulated expression of slit-diaphragm proteins induced by autophagy inhibition. Collectively, this study demonstrated that autophagy might act as a crucial regulatory mechanism of apoptotic cell death by modulating the balance between the pro-survival pathway and the pro-apoptotic pathway of endoplasmic reticulum stress, which might provide a novel mechanistic insight into the interface between autophagy and apoptosis in the progression of podocyte injury.  相似文献   

10.
目的研究内质网应激分子CHOP调控细胞凋亡与自噬的作用和机制。 方法利用衣霉素诱导DU-145细胞产生内质网应激,Western Blot法检测内质网应激相关分子Grp78、Grp94、p-eIF2α和CHOP及自噬蛋白LC3Ⅱ、Atg5和Beclin1的表达;用流式细胞术检测细胞凋亡水平;沉默CHOP基因,用Western Blot法检测凋亡蛋白PARP、Caspase3的表达,流式细胞术检测细胞凋亡;并利用免疫荧光检测自噬标志性蛋白LC3B的表达。 结果衣霉素诱导DU-145细胞内质网应激能诱导一定程度的细胞凋亡,衣霉素处理8、12、24?h的细胞凋亡率分别为3.27﹪±1.02﹪,8.97﹪±0.71﹪和11.67﹪±1.41﹪,处理12?h及24?h的细胞凋亡率与对照组相比差异具有统计学意义(P < 0.01)。同时也能通过抑制PI3K/AKt/mTOR信号通路激活DU-145细胞自噬。CHOP基因沉默抑制细胞凋亡,shCtrl组细胞凋亡率为32.17﹪±3.93﹪,shCHOP-1组细胞凋亡率为23.53﹪±3.41﹪,两组相比差异具有统计学意义(P < 0.05)。且CHOP基因沉默能促进细胞自噬分子LC3B的表达。 结论衣霉素诱导DU-145细胞内质网应激状态下,CHOP在细胞凋亡与自噬之间发挥双重调控作用。  相似文献   

11.
Fan QW  Weiss WA 《Autophagy》2011,7(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

12.
Autophagy is an important homoeostatic mechanism for the lysosomal degradation of protein aggregates and damaged cytoplasmic components. Recent studies suggest that autophagy which is induced by TGF-β1 suppresses kidney fibrosis in renal tubular epithelial cells (RTECs) of obstructed kidneys. Sphingosine kinase 1(SK1), converting sphingosine into endogenous sphingosine-1-phosphate (S1P), was shown to modulate autophagy and involved in the processes of fibrotic diseases. Since SK1 activity is also up-regulated by TGF-β1, we explored its effect on the induction of autophagy and development of renal fibrosis in this study. In vitro, SK1 expression and activity were markedly increased by TGF-β1 stimulation in a time and concentration dependent manner, and concomitant changes in autophagic response were observed in HK-2 cells. Further, knockdown of SK-1 led to a decrease of autophagy whereas overexpression of SK1 caused a greater induction of autophagy. In addition, overexpression of SK1 resulted in decreased of mature TGF-β levels through autophagic degradation. In vivo, SK1 enzymatic activity and autophagic response were both up-regulated in a mouse model of kidney fibrosis induced by unilateral ureteral obstruction (UUO); meanwhile, increased of mature TGF-β1 and deposition of extracellular matrix (ECM) were observed in tubulointerstitial areas compared with sham-operated mice. However, aggravation of renal fibrosis was detected when SK1 inhibitor PF-543 was applied to suppress SK1 enzymatic activity in UUO mice. At the same time, autophagy was also inhibited by PF-543. Thus, our findings suggest that SK1 activation is renoprotective via induction of autophagy in the fibrotic process.  相似文献   

13.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

14.
Histone deacetylase activity is potently inhibited by hydroaximc acid derivatives such as suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). These inhibitors specifically induce differentiation/apoptosis of transformed cells in vitro and suppress tumor growth in vivo. Because of its low toxicity, SAHA is currently evaluated in clinical trials for the treatment of cancer. SAHA and TSA induce apoptosis, which is characterized by mitochondrial stress, but so far, the critical elements of this apoptotic program remain poorly defined. To characterize in more detail this apoptotic program, we used human cell lines containing alterations in important elements of apoptotic response such as: p53, Bcl-2, caspase-9, and caspase-3. We demonstrate that caspase-9 is critical for apoptosis induced by SAHA and TSA and that efficient proteolytic activation of caspase-2, caspase-8, and caspase-7 strictly depends on caspase-9. Bcl-2 efficiently antagonizes cytochrome c release and apoptosis in response to both histone deacetylase inhibitors. We provide evidences that translocation into the mitochondria of the Bcl-2 family member Bid depends on caspase-9 and that this translocation is a late event during TSA-induced apoptosis. We also demonstrate that the susceptibility to TSA- and SAHA-induced cell death is regulated by p53.  相似文献   

15.
Short-chain fatty acids (SCFAs) are the major by-products of bacterial fermentation of undigested dietary fibers in the large intestine. SCFAs, mostly propionate and butyrate, inhibit proliferation and induce apoptosis in colon cancer cells, but clinical trials had mixed results regarding the anti-tumor activities of SCFAs. Herein we demonstrate that propionate and butyrate induced autophagy in human colon cancer cells to dampen apoptosis whereas inhibition of autophagy potentiated SCFA induced apoptosis. Colon cancer cells, after propionate treatment, exhibited extensive characteristics of autophagic proteolysis: increased LC3-I to LC3-II conversion, acidic vesicular organelle development, and reduced p62/SQSTM1 expression. Propionate-induced autophagy was associated with decreased mTOR activity and enhanced AMP kinase activity. The elevated AMPKα phosphorylation was associated with cellular ATP depletion and overproduction of reactive oxygen species due to mitochondrial dysfunction involving the induction of MPT and loss of Δψ. In this context, mitochondria biogenesis was initiated to recover cellular energy homeostasis. Importantly, when autophagy was prevented either pharmacologically (3-MA or chloroquine) or genetically (knockdown of ATG5 or ATG7), the colon cancer cells became sensitized toward propionate-induced apoptosis through activation of caspase-7 and caspase-3. The observations indicate that propionate-triggered autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death, whereas application of an autophagy inhibitor (Chloroquine) is expected to enhance the therapeutic efficacy of SCFAs in inducing colon tumor cell apoptosis.  相似文献   

16.
《Autophagy》2013,9(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

17.
The vulnerable plaque is a key distinguishing feature of atherosclerotic lesions that can cause acute atherothrombotic vascular disease. This study was designed to explore the effect of autophagy on mitochondria‐mediated macrophage apoptosis and vulnerable plaques. Here, we generated the mouse model of vulnerable carotid plaque in ApoE?/? mice. Application of ApoE?/? mice with rapamycin (an autophagy inducer) inhibited necrotic core formation in vulnerable plaques by decreasing macrophage apoptosis. However, 3‐methyladenine (an autophagy inhibitor) promoted plaque vulnerability through deteriorating these indexes. To further explore the mechanism of autophagy on macrophage apoptosis, we used macrophage apoptosis model in vitro and found that 7‐ketocholesterol (7‐KC, one of the primary oxysterols in oxLDL) caused macrophage apoptosis with concomitant impairment of mitochondria, characterized by the impairment of mitochondrial ultrastructure, cytochrome c release, mitochondrial potential dissipation, mitochondrial fragmentation, excessive ROS generation and both caspase‐9 and caspase‐3 activation. Interestingly, such mitochondrial apoptotic responses were ameliorated by autophagy activator, but exacerbated by autophagy inhibitor. Finally, we found that MAPK‐NF‐κB signalling pathway was involved in autophagy modulation of 7‐KC–induced macrophage apoptosis. So, we provide strong evidence for the potential therapeutic benefit of macrophage autophagy in regulating mitochondria‐mediated apoptosis and inhibiting necrotic core formation in vulnerable plaques.  相似文献   

18.
Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo. It was shown to induce apoptosis via a direct effect on mitochondria. This is largely independent of proapoptotic BAK and BAX, but can be inhibited by cyclosporin A (CsA), an inhibitor of the permeability transition (PT) pore. Here we show that blocking apoptosis with general caspase inhibitors did not prevent cell death, indicating that alternative, caspase-independent cell death pathways were activated. BetA did not induce necroptosis, but we observed a strong induction of autophagy in several cancer cell lines. Autophagy was functional as shown by enhanced flux and degradation of long-lived proteins. BetA-induced autophagy could be blocked, just like apoptosis, with CsA, suggesting that autophagy is activated as a response to the mitochondrial damage inflicted by BetA. As both a survival and cell death role have been attributed to autophagy, autophagy-deficient tumor cells and mouse embryo fibroblasts were analyzed to determine the role of autophagy in BetA-induced cell death. This clearly established BetA-induced autophagy as a survival mechanism and indicates that BetA utilizes an as yet-undefined mechanism to kill cancer cells.  相似文献   

19.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosisresistant. Autophagy (cellular "self digestion") has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O(2)). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDainteracting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 overexpression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.  相似文献   

20.
Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib and gefitinib, is a major clinical problem in the treatment of patients with non-small cell lung cancer (NSCLC). YM155 is a survivin small molecule inhibitor and has been demonstrated to induce cancer cell apoptosis and autophagy. EGFR-TKIs have been known to induce cancer cell autophagy. In this study, we showed that YM155 markedly enhanced the sensitivity of erlotinib to EGFR-TKI resistant NSCLC cell lines H1650 (EGFR exon 19 deletion and PTEN loss) and A549 (EGFR wild type and KRAS mutation) through inducing autophagy-dependent apoptosis and autophagic cell death. The effects of YM155 combined with erlotinib on apoptosis and autophagy inductions were more obvious than those of YM155 in combination with survivin knockdown by siRNA transfection, suggesting that YM155 induced autophagy and apoptosis in the NSCLC cells partially depend on survivin downregulation. Meanwhile, we found that the AKT/mTOR pathway is involved in modulation of survivin downregulation and autophagy induction caused by YM155. In addition, YM155 can induce DNA damage in H1650 and A549 cell lines. Moreover, combining erlotinib further augmented DNA damage by YM155, which were retarded by autophagy inhibitor 3MA, or knockdown of autophagy-related protein Beclin 1, revealing that YM155 induced DNA damage is autophagy-dependent. Similar results were also observed in vivo xenograft experiments. Therefore, combination of YM155 and erlotinib offers a promising therapeutic strategy in NSCLC with EGFR-TKI resistant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号